The Kato square root problem for higher order elliptic operators and systems on $ \Bbb R^n $

被引:3
|
作者
Pascal Auscher
Steve Hofmann
Alan McIntosh
Philippe Tchamitchian
机构
[1] LAMIA,
[2] CNRS,undefined
[3] FRE 2270,undefined
[4] Université de Picardie-Jules Verne,undefined
[5] 33,undefined
[6] rue Saint Leu,undefined
[7] 80039 Amiens Cedex 1,undefined
[8] e-mail: auscher@mathinfo.u-picardie.fr,undefined
[9] Department of Mathematics,undefined
[10] University of Missouri-Columbia,undefined
[11] Columbia,undefined
[12] MO 65211,undefined
[13] e-mail: hofmann@math.missouri.edu,undefined
[14] Centre for Mathematics and its Applications,undefined
[15] Australian National University,undefined
[16] Canberra,undefined
[17] ACT 0200,undefined
[18] e-mail: alan@maths.anu.edu.au,undefined
[19] Faculté des Sciences et,undefined
[20] Techniques de St.-Jérome,undefined
[21] Université d'Aix-Marseille III,undefined
[22] Avenue Escadrille Normandie-Niemen,undefined
[23] 13397 Marseille Cedex 20,undefined
[24] and LATP,undefined
[25] CNRS,undefined
[26] UMR 6632,undefined
[27] e-mail: tchamphi@math.u-3mrs.fr,undefined
来源
关键词
Key words: Elliptic systems, Gårding inequality, Kato problem, square roots.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the Kato conjecture for elliptic operators and N×N-systems in divergence form of arbitrary order 2m on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \Bbb R^n $\end{document}. More precisely, we assume the coefficients to be bounded measurable and the ellipticity is taken in the sense of a Gårding inequality. We identify the domain of their square roots as the natural Sobolev space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ H^m(\Bbb R^n,\Bbb C^N) $\end{document}. We also make some remarks on the relation between various ellipticity conditions and Gårding inequality.
引用
收藏
页码:361 / 385
页数:24
相关论文
共 50 条
  • [1] The Kato square root problem for higher order elliptic operators and systems on Rn
    Auscher, Pascal
    Hofmann, Steve
    McIntosh, Alan
    Tchamitchian, Philippe
    JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) : 361 - 385
  • [2] The Commutator of the Kato Square Root for Second Order Elliptic Operators on R~n
    Yan Ping CHEN
    Yong DING
    Steve HOFMANN
    Acta Mathematica Sinica, 2016, 32 (10) : 1121 - 1144
  • [3] The commutator of the Kato square root for second order elliptic operators on ℝn
    Yan Ping Chen
    Yong Ding
    Steve Hofmann
    Acta Mathematica Sinica, English Series, 2016, 32 : 1121 - 1144
  • [4] The solution of the Kato square root problem for second order elliptic operators on Rn
    Auscher, P
    Hofmann, S
    Lacey, M
    McIntosh, A
    Tchamitchian, P
    ANNALS OF MATHEMATICS, 2002, 156 (02) : 633 - 654
  • [5] The commutator of the Kato square root for second order elliptic operators on a"e n
    Chen, Yan Ping
    Ding, Yong
    Hofmann, Steve
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (10) : 1121 - 1144
  • [6] WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF THE KATO SQUARE ROOT OF SECOND ORDER ELLIPTIC OPERATORS ON R~n
    陈艳萍
    丁勇
    朱凯
    ActaMathematicaScientia, 2022, 42 (04) : 1310 - 1332
  • [7] The square root problem of Kato in one dimension, and first order elliptic systems
    Auscher, P
    McIntosh, A
    Nahmod, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1997, 46 (03) : 659 - 695
  • [8] The Commutator of the Kato Square Root for Second Order Elliptic Operators on Rn
    Yan Ping CHEN
    Yong DING
    Steve HOFMANN
    Acta Mathematica Sinica,English Series, 2016, 32 (10) : 1121 - 1144
  • [9] Weighted Norm Inequalities for Commutators of the Kato Square Root of Second Order Elliptic Operators on ℝn
    Yanping Chen
    Yong Ding
    Kai Zhu
    Acta Mathematica Scientia, 2022, 42 : 1310 - 1332
  • [10] Elliptic differential-difference operators with degeneration and the Kato square root problem
    Skubachevskii, A. L.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2660 - 2692