Global Morrey estimates for a class of Ornstein-Uhlenbeck operators

被引:0
|
作者
X. Feng
P. Niu
机构
[1] Shanxi University,
[2] Northwestern Polytechnical University,undefined
关键词
Ornstein-Uhlenbeck operators; Morrey estimates; local quasidistance; 35R03; 49N60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of hypoelliptic Ornstein-Uhlenbeck operators in ℝN given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A} = \sum\limits_{i,j = 1}^{p_0 } {a_{ij} \partial _{x_i x_j }^2 + } \sum\limits_{i,j = 1}^N {b_{ij} x_i \partial _x } ,$\end{document} where (aij), (bij) are N × N constant matrices, and (aij) is symmetric and positive semidefinite. We deduce global Morrey estimates forA from similar estimates of its evolution operator L on a strip domain S = ℝN × [−1, 1].
引用
收藏
页码:42 / 52
页数:10
相关论文
共 50 条
  • [11] Sharp estimates for the Ornstein-Uhlenbeck operator
    Mauceri, G
    Meda, S
    Sjögren, P
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2004, 3 (03) : 447 - 480
  • [12] On the eigenfunctions of the complex Ornstein-Uhlenbeck operators
    Chen, Yong
    Liu, Yong
    KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (03) : 577 - 596
  • [13] Global Lp estimates for degenerate Ornstein–Uhlenbeck operators
    Marco Bramanti
    Giovanni Cupini
    Ermanno Lanconelli
    Enrico Priola
    Mathematische Zeitschrift, 2010, 266 : 789 - 816
  • [14] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [15] DIFFERENTIABLE PERTURBATIONS OF ORNSTEIN-UHLENBECK OPERATORS
    Manca, L.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2008, 17 (3-4): : 435 - 443
  • [16] Operators associated with the Ornstein-Uhlenbeck semigroup
    Pérez, S
    Soria, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 857 - 871
  • [17] Ornstein-Uhlenbeck operators and holomorphic representations for a class of bounded symmetric domains
    Airault, Helene
    Boussejra, Abdelhamid
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 187
  • [18] Kolmogorov Equations for Degenerate Ornstein-Uhlenbeck Operators
    Bogachev, V. I.
    Shaposhnikov, S. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (01) : 21 - 29
  • [19] Ornstein-Uhlenbeck operators with time periodic coefficients
    Da Prato, Giuseppe
    Lunardi, Alessandra
    JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (04) : 587 - 614
  • [20] Maximal operators for the holomorphic Ornstein-Uhlenbeck semigroup
    García-Cuerva, J
    Mauceri, G
    Meda, S
    Sjögren, P
    Torrea, JL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 219 - 234