Global Morrey estimates for a class of Ornstein-Uhlenbeck operators

被引:0
|
作者
X. Feng
P. Niu
机构
[1] Shanxi University,
[2] Northwestern Polytechnical University,undefined
关键词
Ornstein-Uhlenbeck operators; Morrey estimates; local quasidistance; 35R03; 49N60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of hypoelliptic Ornstein-Uhlenbeck operators in ℝN given by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{A} = \sum\limits_{i,j = 1}^{p_0 } {a_{ij} \partial _{x_i x_j }^2 + } \sum\limits_{i,j = 1}^N {b_{ij} x_i \partial _x } ,$\end{document} where (aij), (bij) are N × N constant matrices, and (aij) is symmetric and positive semidefinite. We deduce global Morrey estimates forA from similar estimates of its evolution operator L on a strip domain S = ℝN × [−1, 1].
引用
收藏
页码:42 / 52
页数:10
相关论文
共 50 条
  • [1] Global Morrey Estimates for a Class of Ornstein-Uhlenbeck Operators
    Feng, X.
    Niu, P.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (01): : 42 - 52
  • [2] Global Lp estimates for degenerate Ornstein-Uhlenbeck operators
    Bramanti, Marco
    Cupini, Giovanni
    Lanconelli, Ermanno
    Priola, Enrico
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (04) : 789 - 816
  • [3] Global Lp estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients
    Bramanti, M.
    Cupini, G.
    Lanconelli, E.
    Priola, E.
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (11-12) : 1087 - 1101
  • [4] GLOBAL Lp ESTIMATES FOR DEGENERATE ORNSTEIN-UHLENBECK OPERATORS: A GENERAL APPROACH
    Lanconelli, Ermanno
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (01): : 57 - 72
  • [5] Schauder estimates for degenerate Levy Ornstein-Uhlenbeck operators
    Marino, Lorenzo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [6] Ornstein-Uhlenbeck operators and semigroups
    Bogachev, V. I.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (02) : 191 - 260
  • [7] A counterexample to L∞-gradient type estimates for Ornstein-Uhlenbeck operators
    Dolera, Emanuele
    Priola, Enrico
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) : 975 - 988
  • [8] Pointwise and norm estimates for operators associated with the Ornstein-Uhlenbeck semigroup
    Menarguez, T
    Perez, S
    Soria, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01): : 25 - 30
  • [9] Pointwise and norm estimates for operators associated with the Ornstein-Uhlenbeck semigroup
    Menarguez, T.
    Perez, S.
    Soria, F.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 326 (01):
  • [10] Regularity of invariant measures for a class of perturbed Ornstein-Uhlenbeck operators
    Bogachev, Vladimir I.
    Da Prato, Giuseppe
    Roeckner, Michael
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1996, 3 (02): : 261 - 268