Can Fluid Interaction Influence the Critical Mass for Taxis-Driven Blow-up in Bounded Planar Domains?

被引:0
|
作者
Michael Winkler
机构
[1] Universität Paderborn,Institut für Mathematik
来源
关键词
Chemotaxis; Critical mass; Blow-up; 35B44; 35K55; 92C17; 35Q92;
D O I
暂无
中图分类号
学科分类号
摘要
In a bounded planar domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega $\end{document} with smooth boundary, the initial-boundary value problem of homogeneous Neumann type for the Keller-Segel-fluid system {nt+∇⋅(nu)=Δn−∇⋅(n∇c),x∈Ω,t>0,0=Δc−c+n,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l} n_{t} + \nabla \cdot (nu) = \Delta n - \nabla \cdot (n\nabla c), & x\in \varOmega , \ t>0, \\ 0 = \Delta c -c+n, & x\in \varOmega , \ t>0, \end{array}\displaystyle \right . \end{aligned}$$ \end{document} is considered, where u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u$\end{document} is a given sufficiently smooth velocity field on Ω‾×[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\overline {\varOmega }\times [0,\infty )$\end{document} that is tangential on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial \varOmega $\end{document} but not necessarily solenoidal.
引用
收藏
页码:577 / 591
页数:14
相关论文
共 5 条