Infinite time blow-up for the three dimensional energy critical heat equation in bounded domains

被引:1
|
作者
Ageno, Giacomo [1 ]
del Pino, Manuel [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
关键词
SEMILINEAR PARABOLIC EQUATION; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; DYNAMICS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00208-024-02885-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet problem for the energy-critical heat equation {u(t )= Delta u + u(5 )in Omega x R+, u = 0 on partial derivative Omega x R+, u(x, 0) = u(0)(x) in Omega, where Omega is a bounded smooth domain in R-3. Let H-gamma(x, y) be the regular part of the Green function of - Delta - gamma in Omega, where gamma is an element of (0, lambda(1)) and lambda(1 )is the first Dirichleteigen value of -Delta. Then, given a point q is an element of Omega such that 3 gamma(q) < lambda(1), where gamma(q) := sup{gamma > 0 : H-gamma(q, q) > 0}, we prove the existence of a non-radial global positive and smooth solution u(x, t) which blows up in infinite time with spike in q. The solution has the asymptotic profile u(x, t) similar to 3(1/4 )(mu(t)/mu(t)(2 )+ |x - xi(t)|(2))(1/2 )as t -> infinity, (0.1) where -ln(mu(t)) = 2 gamma(q)t(1 + o(1)), xi(t) = q + O(mu(t)) as t -> infinity.
引用
收藏
页码:1 / 94
页数:94
相关论文
共 50 条
  • [1] INFINITE-TIME BLOW-UP FOR THE 3-DIMENSIONAL ENERGY-CRITICAL HEAT EQUATION
    Del Pino, Manuel
    Musso, Monica
    Wei, Juncheng
    ANALYSIS & PDE, 2020, 13 (01): : 215 - 274
  • [2] Infinite time blow-up for critical heat equation with drift terms
    Chunhua Wang
    Juncheng Wei
    Suting Wei
    Yifu Zhou
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [3] Infinite time blow-up for the fractional heat equation with critical exponent
    Monica Musso
    Yannick Sire
    Juncheng Wei
    Youquan Zheng
    Yifu Zhou
    Mathematische Annalen, 2019, 375 : 361 - 424
  • [4] Infinite time blow-up for the fractional heat equation with critical exponent
    Musso, Monica
    Sire, Yannick
    Wei, Juncheng
    Zheng, Youquan
    Zhou, Yifu
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 361 - 424
  • [5] Infinite time blow-up for critical heat equation with drift terms
    Wang, Chunhua
    Wei, Juncheng
    Wei, Suting
    Zhou, Yifu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
  • [6] Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation
    Pillai, Mohandas
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 284 (1407) : 1 - 242
  • [7] Type Ⅱ Blow-up in the 5-dimensional Energy Critical Heat Equation
    Manuel del PINO
    Monica MUSSO
    Jun Cheng WEI
    Acta Mathematica Sinica, 2019, 35 (06) : 1027 - 1042
  • [8] Type Ⅱ Blow-up in the 5-dimensional Energy Critical Heat Equation
    Manuel del PINO
    Monica MUSSO
    Jun Cheng WEI
    Acta Mathematica Sinica,English Series, 2019, 35 (06) : 1027 - 1042
  • [9] Type II Blow-up in the 5-dimensional Energy Critical Heat Equation
    del Pino, Manuel
    Musso, Monica
    Wei, Jun Cheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (06) : 1027 - 1042
  • [10] Type II Blow-up in the 5-dimensional Energy Critical Heat Equation
    Manuel del Pino
    Monica Musso
    Jun Cheng Wei
    Acta Mathematica Sinica, English Series, 2019, 35 : 1027 - 1042