Infinite time blow-up for the three dimensional energy critical heat equation in bounded domains

被引:1
|
作者
Ageno, Giacomo [1 ]
del Pino, Manuel [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
关键词
SEMILINEAR PARABOLIC EQUATION; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; DYNAMICS; EXISTENCE; BEHAVIOR;
D O I
10.1007/s00208-024-02885-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Dirichlet problem for the energy-critical heat equation {u(t )= Delta u + u(5 )in Omega x R+, u = 0 on partial derivative Omega x R+, u(x, 0) = u(0)(x) in Omega, where Omega is a bounded smooth domain in R-3. Let H-gamma(x, y) be the regular part of the Green function of - Delta - gamma in Omega, where gamma is an element of (0, lambda(1)) and lambda(1 )is the first Dirichleteigen value of -Delta. Then, given a point q is an element of Omega such that 3 gamma(q) < lambda(1), where gamma(q) := sup{gamma > 0 : H-gamma(q, q) > 0}, we prove the existence of a non-radial global positive and smooth solution u(x, t) which blows up in infinite time with spike in q. The solution has the asymptotic profile u(x, t) similar to 3(1/4 )(mu(t)/mu(t)(2 )+ |x - xi(t)|(2))(1/2 )as t -> infinity, (0.1) where -ln(mu(t)) = 2 gamma(q)t(1 + o(1)), xi(t) = q + O(mu(t)) as t -> infinity.
引用
收藏
页码:1 / 94
页数:94
相关论文
共 50 条
  • [21] Blow-up on the boundary for the heat equation
    Marek Fila
    Ján Filo
    Gary M. Lieberman
    Calculus of Variations and Partial Differential Equations, 2000, 10 : 85 - 99
  • [22] Blow-up on the boundary for the heat equation
    Fila, M
    Filo, J
    Lieberman, GM
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (01) : 85 - 99
  • [23] Global solution and blow-up of critical heat equation with nonlocal interaction
    Yang, Minbo
    Zhang, Jian
    FORUM MATHEMATICUM, 2025,
  • [24] Finite time/Infinite time blow-up behaviors for the inhomogeneous nonlinear Schrodinger equation
    Bai, Ruobing
    Li, Bing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 232
  • [25] LP-ENERGY AND BLOW-UP FOR A SEMILINEAR HEAT-EQUATION
    WEISSLER, FB
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 545 - 551
  • [26] Numerical blow-up for a nonlinear heat equation
    Firmin K. N’Gohisse
    Théodore K. Boni
    Acta Mathematica Sinica, English Series, 2011, 27 : 845 - 862
  • [27] Numerical blow-up for a nonlinear heat equation
    N'Gohisse, Firmin K.
    Boni, Theodore K.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (05) : 845 - 862
  • [28] BLOW-UP FOR A FULLY FRACTIONAL HEAT EQUATION
    Ferreira, Raul
    De Pablo, Arturo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (02) : 569 - 584
  • [29] BLOW-UP RATES FOR A FRACTIONAL HEAT EQUATION
    Ferreira, R.
    de Pablo, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2011 - 2018
  • [30] A blow-up problem for a nonlinear heat equation in the complex plane of time
    C.-H. Cho
    H. Okamoto
    M. Shōji
    Japan Journal of Industrial and Applied Mathematics, 2016, 33 : 145 - 166