Multiparameter models for random walks in disordered lattice systems

被引:0
|
作者
V. E. Shestopal
机构
[1] Institute for Theoretical and Experimental Physics,
来源
关键词
Asymptotic Expansion; Lattice Site; Jump Rate; Asymptotic Order; Random Jump;
D O I
暂无
中图分类号
学科分类号
摘要
Multidimensional asymptotically exactly solvable models are suggested for random walks in a stationary random lattice environment. These models differ from the well-known ones in that they involve arbitrarily many independent local random parameters per lattice site and allow for slowly decreasing intensities with increasing intersite distance. In particular, the suggested models describe the first nontrivial exactly solvable multidimensional systems with symmetrical interaction.
引用
收藏
页码:660 / 669
页数:9
相关论文
共 50 条
  • [21] RENORMALIZATION-GROUP APPROACH FOR RANDOM-WALKS ON A DISORDERED BOND-DILUTED LATTICE
    SCHULZ, M
    PHYSICS LETTERS A, 1993, 181 (02) : 119 - 122
  • [22] On the physical relevance of random walks: an example of random walks on a randomly oriented lattice
    Campanino, M
    Petritis, D
    RANDOM WALKS AND GEOMETRY, 2004, : 393 - 411
  • [23] Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice
    Cirillo, E. N. M.
    Colangeli, M.
    Rondoni, L.
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (03) : 692 - 709
  • [24] Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice
    E. N. M. Cirillo
    M. Colangeli
    L. Rondoni
    Journal of Statistical Physics, 2019, 176 : 692 - 709
  • [25] RANDOM-WALKS ON SITE DISORDERED LATTICES
    MACHTA, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09): : L531 - L538
  • [26] Simulation of distribution of random walks on a lattice
    Jiang, J. G.
    Huang, Y. N.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (02) : 177 - 179
  • [27] Analysis of random walks on a hexagonal lattice
    Di Crescenzo, Antonio
    Macci, Claudio
    Martinucci, Barbara
    Spina, Serena
    IMA JOURNAL OF APPLIED MATHEMATICS, 2019, 84 (06) : 1061 - 1081
  • [28] Multiphase partitions of lattice random walks
    Giona, Massimiliano
    Cocco, Davide
    EPL, 2019, 126 (05)
  • [29] Exclusion statistics and lattice random walks
    Ouvry, Stephane
    Polychronakos, Alexios P.
    NUCLEAR PHYSICS B, 2019, 948
  • [30] RANDOM-WALKS ON A LATTICE OF OBSTACLES
    ZHELIGOVSKAYA, EA
    TERNOVSKII, FF
    KHOKHLOV, AR
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 75 (03) : 644 - 654