An infinite-dimensional version of the Borsuk-Ulam theorem

被引:0
|
作者
B. D. Gel’man
机构
[1] Voronezh State University,
关键词
closed surjective operator; compact map; operator equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the solvability of the equation a(x) = f(x) on a sphere in a Banach space, where a is a closed surjective linear operator and f is an odd a-compact map. We also estimate the topological dimension of the solution set and give applications of the corresponding theorem to some problems in differential equations and other fields of mathematics.
引用
收藏
页码:239 / 242
页数:3
相关论文
共 50 条
  • [21] Some generalizations of the Borsuk-Ulam Theorem
    Vendruscolo, Daniel
    Desideri, Patricia E.
    Pergher, Pedro L. Q.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (3-4): : 583 - 593
  • [22] The Borsuk-Ulam theorem for general spaces
    Pergher, PLQ
    De Mattos, D
    Dos Santos, EL
    ARCHIV DER MATHEMATIK, 2003, 81 (01) : 96 - 102
  • [23] THE BORSUK-ULAM THEOREM AND BISECTION OF NECKLACES
    ALON, N
    WEST, DB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) : 623 - 628
  • [24] ON A BORSUK-ULAM THEOREM FOR STIEFEL MANIFOLDS
    YOKOYAMA, O
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (02) : 33 - 34
  • [25] SOME GENERALIZATIONS OF BORSUK-ULAM THEOREM
    NUSSBAUM, RD
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1977, 35 (JUL) : 136 - 158
  • [26] ISOVARIANT MAPS AND THE BORSUK-ULAM THEOREM
    WASSERMAN, AG
    TOPOLOGY AND ITS APPLICATIONS, 1991, 38 (02) : 155 - 161
  • [27] NONSYMMETRIC GENERALIZATION OF BORSUK-ULAM THEOREM
    JOSHI, KD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A212 - &
  • [28] EQUIVALENT FORMULATIONS OF BORSUK-ULAM THEOREM
    BACON, P
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (03): : 492 - &
  • [29] The Borsuk-Ulam theorem for maps into a surface
    Goncalves, Daciberg Lima
    Guaschi, John
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (10-11) : 1742 - 1759
  • [30] The Borsuk-Ulam theorem for general spaces
    P. L. Q. Pergher
    D. de Mattos
    E. L. dos Santos
    Archiv der Mathematik, 2003, 81 : 96 - 102