Unique solvability of a linear problem with perturbed periodic boundary values

被引:0
|
作者
Bahman Mehri
Mohammad H. Nojumi
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
来源
关键词
Ordinary differential equations; integral equations; periodic boundary value problems;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the problem with perturbed periodic boundary values \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ \begin{gathered} y'''(x) + a_2 (x)y''(x) + a_1 (x)y'(x) + a_0 (x)y(x) = f(x), \hfill \\ y^{(i)} (T) = cy^{(i)} (0), i = 0,1,2;\;\;0 < c < 1 \hfill \\ \end{gathered} \right.$$ \end{document} with a2, a1, a0 ∈ C[0, T] for some arbitrary positive real number T, by transforming the problem into an integral equation with the aid of a piecewise polynomial and utilizing the Fredholm alternative theorem to obtain a condition on the uniform norms of the coefficients a2, a1 and a0 which guarantees unique solvability of the problem. Besides having theoretical value, this problem has also important applications since decay is a phenomenon that all physical signals and quantities (amplitude, velocity, acceleration, curvature, etc.) experience.
引用
收藏
页码:351 / 362
页数:11
相关论文
共 50 条