Polynomial Representations via Spectral Decompositions

被引:0
|
作者
O. Demanze
机构
[1] Université des sciences et Technologies de Lille,U.F.R. de mathématiques Pures et Appliquées
来源
Positivity | 2003年 / 7卷
关键词
Functional Analysis; Fourier Analysis; Operator Theory; Potential Theory; Homogeneous Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
We show using functional analysis methods, that under some conditions, such as the positivity of a homogeneous polynomial, one can give a representation of polynomials which are positive on semi-algebraic sets, allowing irrational fractions with denominators of the form (1+t21)β1/2 ...(1+t2n)βn/2, βi∈Z+, i = 1, ..., n
引用
收藏
页码:235 / 244
页数:9
相关论文
共 50 条
  • [21] Sparse Representations for Image Decompositions
    Davi Geiger
    Tyng-Luh Liu
    Michael J. Donahue
    International Journal of Computer Vision, 1999, 33 : 139 - 156
  • [22] Decompositions of generalized wavelet representations
    Currey, Bradley
    Mayeli, Azita
    Oussa, Vignon
    OPERATOR METHODS IN WAVELETS, TILINGS, AND FRAMES, 2014, 626 : 67 - 85
  • [23] Decompositions of rational Gabor representations
    Oussa, Vignon
    TRENDS IN HARMONIC ANALYSIS AND ITS APPLICATIONS, 2015, 650 : 37 - 54
  • [24] Series representations in spaces of vector-valued functions via Schauder decompositions
    Kruse, Karsten
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (02) : 354 - 376
  • [25] Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices
    Kandasamy, Kirthevasan
    Al-Shedivat, Maruan
    Xing, Eric P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [26] IDENTIFYING TECHNOLOGY SHOCKS AT THE BUSINESS CYCLE VIA SPECTRAL VARIANCE DECOMPOSITIONS
    Lovcha, Yuliya
    Perez-Laborda, Alejandro
    MACROECONOMIC DYNAMICS, 2021, 25 (08) : 1966 - 1992
  • [27] ABSOLUTE SPECTRAL DECOMPOSITIONS
    KOZLOVSK.IM
    DOKLADY AKADEMII NAUK SSSR, 1973, 209 (03): : 533 - 536
  • [28] STOCHASTIC SPACE TRANSFORMS IN SUBSURFACE HYDROLOGY .2. GENERALIZED SPECTRAL DECOMPOSITIONS AND PLANCHEREL REPRESENTATIONS
    CHRISTAKOS, G
    HRISTOPULOS, DT
    STOCHASTIC HYDROLOGY AND HYDRAULICS, 1994, 8 (02): : 117 - 138
  • [29] Polynomial phase signal analysis based on the polynomial derivatives decompositions
    Benidir, M
    Ouldali, A
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (07) : 1954 - 1965
  • [30] On multiplicative decompositions of polynomial sequences, II
    Hajdu, L.
    Sarkozv, A.
    ACTA ARITHMETICA, 2018, 186 (02) : 191 - 200