Development of a Method for Determining the Search Window for Solar Flare Neutrinos

被引:0
|
作者
K. Okamoto
Y. Nakano
S. Masuda
Y. Itow
M. Miyake
T. Terasawa
S. Ito
M. Nakahata
机构
[1] The University of Tokyo,Kamioka Observatory, Institute for Cosmic Ray Research
[2] Kobe University,Department of Physics
[3] Nagoya University,Institute for Space
[4] Nagoya University,Earth Environmental Research
[5] Nagoya University,Kobayashi
[6] The University of Tokyo,Maskawa Institute for the Origin of Particles and the Universe
[7] Okayama University,Department of Physics
[8] The University of Tokyo,Institute for Cosmic Ray Research
来源
Solar Physics | 2020年 / 295卷
关键词
Solar flare; Neutrino; -ray; X-ray; Neutron; Particle acceleration;
D O I
暂无
中图分类号
学科分类号
摘要
Neutrinos generated during solar flares remain elusive. However, after 50 years of discussion and search, the potential knowledge unleashed by their discovery keeps the search crucial. Neutrinos associated with solar flares provide information on otherwise poorly known particle acceleration mechanisms during a solar flare. For neutrino detectors, the separation between atmospheric neutrinos and solar flare neutrinos is technically encumbered by an energy band overlap. To improve differentiation from background neutrinos, we developed a method to determine the temporal search window for neutrino production during solar flares. Our method is based on data recorded by solar satellites, such as the Geostationary Operational Environmental Satellite (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and GEOTAIL. In this study, we selected 23 solar flares above X5.0 class that occurred between 1996 and 2018. We analyzed the light curves of soft X-rays, hard X-rays, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-rays, line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-rays from neutron capture as well as the derivative of soft X-rays. The average search windows are determined as follows: 4178 s for soft X-ray, 700 s for the derivative of soft X-ray, 944 s for hard X-ray (100 – 800 keV), 1,586\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1{,}586$\end{document} s for line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma $\end{document}-ray from neutron captures, and 776 s for hard X-ray (above 50 keV). This method allows neutrino detectors to improve their sensitivity to solar flare neutrinos.
引用
收藏
相关论文
共 50 条
  • [41] A METHOD FOR DETERMINING SOLAR PROTON SPECTRA
    HERISTCHI, D
    BAROUCH, E
    MASSE, P
    NUCLEAR INSTRUMENTS & METHODS, 1969, 71 (03): : 353 - +
  • [42] SEARCH FOR LINEAR-POLARIZATION IN SOLAR NEIGHBORHOOD FLARE STARS AND SPOTTED STARS
    PETTERSEN, BR
    HSU, JC
    ASTROPHYSICAL JOURNAL, 1981, 247 (03): : 1013 - 1023
  • [43] METHOD OF DETERMINING STATISTICAL CHARACTERISTICS OF SEARCH TIME
    TITOV, VP
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1971, 16 (06): : 1045 - &
  • [44] Determining of solar plasma density altitude profiles by solar flare 2.22 MeV γ-line data for two events
    Kuzhevskij, B.M.
    Miroshnichenko, L.I.
    Troitskaya, E.V.
    Izvestiya Akademii Nauk. Ser. Fizicheskaya, 2002, 66 (11): : 1673 - 1677
  • [45] Determining of solar plasma density altitude profiles by solar flare 2.22 MeV γ-line data for two events
    Kuzhevsky, BM
    Miroshnichenko, LI
    Troitskaya, EV
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2002, 66 (11): : 1673 - 1676
  • [46] Solar Flare Forecast Model Based on Resampling and Fusion Method
    Wan, Jie
    Fu, Jun-Feng
    Tan, Dai-Min
    Han, Ke
    Yu, Meng-Yao
    Peng, E.
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (08)
  • [47] Determining of solar plasma density altitude profiles by solar flare 2.22 MeV γ-line data for two events
    Kuzhevskij, B.M.
    Miroshnichenko, L.I.
    Troitskaya, E.V.
    Gazovaya Promyshlennost, 2002, (11): : 1673 - 1677
  • [48] Reconstruction of RHESSI solar flare images with a forward fitting method
    Aschwanden, MJ
    Schmahl, E
    Team, R
    SOLAR PHYSICS, 2002, 210 (1-2) : 193 - 211
  • [49] POSITION AND DEVELOPMENT OF THE GREAT SOLAR FLARE OF MAY 10, 1949
    DODSON, HW
    ASTRONOMICAL JOURNAL, 1949, 54 (07): : 183 - 183
  • [50] ABC METHOD FOR PROVIDING WARNING OF AN IMPENDING SOLAR-FLARE
    WALLIS, DC
    CANADIAN AERONAUTICS AND SPACE JOURNAL, 1973, 19 (01): : 23 - 23