LDNet: low-light image enhancement with joint lighting and denoising

被引:0
|
作者
Yuhang Li
Tianyanshi Liu
Jiaxin Fan
Youdong Ding
机构
[1] Shanghai University,Shanghai Film Academy
[2] Shanghai Engineering Research Center of Motion Picture Special Effects,undefined
来源
关键词
Low-light enhancement; Image processing; Supervised learning; Denoising;
D O I
暂无
中图分类号
学科分类号
摘要
Due to unavoidable environmental and/or technical constraints, many photographs are often taken in low-light conditions, which result in underexposure and severe noise. Existing low-light enhancement and denoising methods can deal with both problems individually, but the forced cascading of such methods does not deal well with the combined degradation of light and noise, and is also time-consuming. To address this problem, we propose an efficient network–LDNet, to perform joint low-light enhancement and denoising tasks. LDNet contains an encoder for low-light enhancement, L-Encoder, and a decoder for denoising, D-Decoder. Specifically, we customize the lighten enhancement block (LEB) in L-Encoder to recover rich texture information and luminance information. In D-Decoder, we use image adaptive projection for denoising. Furthermore, since training an end-to-end network requires paired data support, we collect a large-scale real low-light image paired dataset (LN-data). Both the proposed network and dataset provide the basis for this challenging joint task. Extensive experimental results show that our approach achieves better results in both qualitative and quantitative evaluation, notably with a PSNR value of 27.69 and an SSIM value of 0.91 on the LN-data dataset, outperforming other optimal methods.
引用
收藏
相关论文
共 50 条
  • [31] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [32] Low-light Image Enhancement Based on Joint Generative Adversarial Network and Image Quality Assessment
    Hua, Wei
    Xia, Youshen
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [33] Benchmarking Low-Light Image Enhancement and Beyond
    Jiaying Liu
    Dejia Xu
    Wenhan Yang
    Minhao Fan
    Haofeng Huang
    International Journal of Computer Vision, 2021, 129 : 1153 - 1184
  • [34] Low-light image enhancement with knowledge distillation
    Li, Ziwen
    Wang, Yuehuan
    Zhang, Jinpu
    NEUROCOMPUTING, 2023, 518 : 332 - 343
  • [35] Low-light Image Enhancement with Domain Adaptation
    Zhang, Yunjie
    Gao, Bin
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 55 - 60
  • [36] A survey on image enhancement for Low-light images
    Guo, Jiawei
    Ma, Jieming
    Garcia-Fernandez, Angel F.
    Zhang, Yungang
    Liang, Haining
    HELIYON, 2023, 9 (04)
  • [37] Low-Light Image Enhancement with Normalizing Flow
    Wang, Yufei
    Wan, Renjie
    Yang, Wenhan
    Li, Haoliang
    Chau, Lap-Pui
    Kot, Alex
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2604 - 2612
  • [38] Combining implicit and explicit priors for zero-reference low-light image enhancement and denoising
    Yu, Jinxia
    Xue, Fabao
    Huo, Zhanqiang
    Qiao, Yingxu
    MULTIMEDIA SYSTEMS, 2025, 31 (02)
  • [39] A low light natural image statistical model for joint contrast enhancement and denoising
    Malik, Sameer
    Soundararajan, Rajiv
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [40] A Novel Approach of Low-Light Image Denoising for Face Recognition
    Kang, Yimei
    Pan, Wang
    ADVANCES IN MECHANICAL ENGINEERING, 2014,