Testing the nullspace property using semidefinite programming

被引:0
|
作者
Alexandre d’Aspremont
Laurent El Ghaoui
机构
[1] Princeton University,ORFE Department
[2] U.C. Berkeley,EECS Department
来源
Mathematical Programming | 2011年 / 127卷
关键词
Compressed sensing; Nullspace property; Semidefinite programming; Restricted isometry constant; 90C22; 94A12; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Recent results in compressed sensing show that, under certain conditions, the sparsest solution to an underdetermined set of linear equations can be recovered by solving a linear program. These results either rely on computing sparse eigenvalues of the design matrix or on properties of its nullspace. So far, no tractable algorithm is known to test these conditions and most current results rely on asymptotic properties of random matrices. Given a matrix A, we use semidefinite relaxation techniques to test the nullspace property on A and show on some numerical examples that these relaxation bounds can prove perfect recovery of sparse solutions with relatively high cardinality.
引用
收藏
页码:123 / 144
页数:21
相关论文
共 50 条
  • [21] Relaxations of the Satisfiability Problem Using Semidefinite Programming
    Etienne de Klerk
    Hans van Maaren
    Joost P. Warners
    Journal of Automated Reasoning, 2000, 24 : 37 - 65
  • [22] Graph partitioning using linear and semidefinite programming
    Lisser, A
    Rendl, E
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 91 - 101
  • [23] Unsupervised Fault Detection Using Semidefinite Programming
    Lopez, J. A.
    Sznaier, M.
    Camps, O.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3798 - 3803
  • [24] Ensemble clustering using semidefinite programming with applications
    Singh, Vikas
    Mukherjee, Lopamudra
    Peng, Jiming
    Xu, Jinhui
    MACHINE LEARNING, 2010, 79 (1-2) : 177 - 200
  • [25] Ensemble clustering using semidefinite programming with applications
    Vikas Singh
    Lopamudra Mukherjee
    Jiming Peng
    Jinhui Xu
    Machine Learning, 2010, 79 : 177 - 200
  • [26] Graph partitioning using linear and semidefinite programming
    A. Lisser
    F. Rendl
    Mathematical Programming, 2003, 95 : 91 - 101
  • [27] Relaxations of the satisfiability problem using semidefinite programming
    De Klerk, E
    Van Maaren, H
    Warners, JP
    JOURNAL OF AUTOMATED REASONING, 2000, 24 (1-2) : 37 - 65
  • [28] USING SEMIDEFINITE PROGRAMMING FOR THE CHANNEL ASSIGNMENT PROBLEM
    Pesko, Stefan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE QUANTITATIVE METHODS IN ECONOMICS (MULTIPLE CRITERIA DECISION MAKING XII), 2004, : 173 - 178
  • [29] Estimation of Positive Semidefinite Correlation Matrices by Using Convex Quadratic Semidefinite Programming
    Fushiki, Tadayoshi
    NEURAL COMPUTATION, 2009, 21 (07) : 2028 - 2048
  • [30] A Nullspace Property for Subspace-Preserving Recovery
    Kaba, Mustafa D.
    You, Chong
    Robinson, Daniel P.
    Mallada, Enrique
    Vidal, Rene
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139