Testing the nullspace property using semidefinite programming

被引:0
|
作者
Alexandre d’Aspremont
Laurent El Ghaoui
机构
[1] Princeton University,ORFE Department
[2] U.C. Berkeley,EECS Department
来源
Mathematical Programming | 2011年 / 127卷
关键词
Compressed sensing; Nullspace property; Semidefinite programming; Restricted isometry constant; 90C22; 94A12; 90C27;
D O I
暂无
中图分类号
学科分类号
摘要
Recent results in compressed sensing show that, under certain conditions, the sparsest solution to an underdetermined set of linear equations can be recovered by solving a linear program. These results either rely on computing sparse eigenvalues of the design matrix or on properties of its nullspace. So far, no tractable algorithm is known to test these conditions and most current results rely on asymptotic properties of random matrices. Given a matrix A, we use semidefinite relaxation techniques to test the nullspace property on A and show on some numerical examples that these relaxation bounds can prove perfect recovery of sparse solutions with relatively high cardinality.
引用
收藏
页码:123 / 144
页数:21
相关论文
共 50 条
  • [1] Testing the nullspace property using semidefinite programming
    d'Aspremont, Alexandre
    El Ghaoui, Laurent
    MATHEMATICAL PROGRAMMING, 2011, 127 (01) : 123 - 144
  • [2] Semidefinite programming for the educational testing problem
    Suliman Al-Homidan
    Central European Journal of Operations Research, 2008, 16 : 239 - 249
  • [3] Semidefinite programming for the educational testing problem
    Al-Homidan, Suliman
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2008, 16 (03) : 239 - 249
  • [4] An Improved Semidefinite Programming Hierarchy for Testing Entanglement
    Harrow, Aram W.
    Natarajan, Anand
    Wu, Xiaodi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) : 881 - 904
  • [5] An Improved Semidefinite Programming Hierarchy for Testing Entanglement
    Aram W. Harrow
    Anand Natarajan
    Xiaodi Wu
    Communications in Mathematical Physics, 2017, 352 : 881 - 904
  • [6] A self-concordance property for nonconvex semidefinite programming
    Garces, Rodrigo
    Gomez, Walter
    Jarre, Florian
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2011, 74 (01) : 77 - 92
  • [7] A self-concordance property for nonconvex semidefinite programming
    Rodrigo Garcés
    Walter Gómez
    Florian Jarre
    Mathematical Methods of Operations Research, 2011, 74 : 77 - 92
  • [8] Uniqueness of codes using semidefinite programming
    Andries E. Brouwer
    Sven C. Polak
    Designs, Codes and Cryptography, 2019, 87 : 1881 - 1895
  • [9] TRACE OPTIMIZATION USING SEMIDEFINITE PROGRAMMING
    Cafuta, Kristijan
    Klep, Igor
    Povh, Janez
    SOR'11 PROCEEDINGS: THE 11TH INTERNATIONAL SYMPOSIUM ON OPERATIONAL RESEARCH IN SLOVENIA, 2011, : 95 - 101
  • [10] Controller approximation using semidefinite programming
    Thake, A.J.
    McLellan, P.J.
    Forbes, J.F.
    Industrial and Engineering Chemistry Research, 1999, 38 (07): : 2699 - 2708