Fast and General Incomplete Multi-view Adaptive Clustering

被引:0
|
作者
Xia Ji
Lei Yang
Sheng Yao
Peng Zhao
Xuejun Li
机构
[1] Anhui University,School of Computer Science and Technology
来源
Cognitive Computation | 2023年 / 15卷
关键词
Multi-view clustering; Incomplete multi-view data; Similarity matrix spectral clustering;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of data collection technologies, multi-view clustering (MVC) has become an emerging research topic. The traditional MVC method cannot process incomplete views. In recent years, although many incomplete multi-view clustering methods have been proposed by many researchers, these methods still suffer from some limitations. For example, these methods all have parameters that need to be adjusted, or have high computational complexity and are not suitable for processing large-scale data. To make matters worse, these methods are not suitable for cases where there are no paired samples among multiple views. The above limitations make existing methods difficult to apply in practice. This paper proposes a Fast and General Incomplete Multi-view Adaptive Clustering (FGPMAC) method. The FGPMAC adopts an adaptive neighbor assignment strategy to independently construct the similarity matrix of each view, thereby it can handle the cases where there are no paired samples among multiple views, and eliminating the necessary to adjust the parameters. Moreover, by adopting a non-iterative approach, FGPMAC has low computational complexity and is suitable for large-scale datasets. Results of experiments on multiple real datasets fully demonstrate the advantages of FGPMAC, such as simplicity, effectiveness and superiority.
引用
收藏
页码:683 / 693
页数:10
相关论文
共 50 条
  • [41] Consensus guided incomplete multi-view spectral clustering
    Wen, Jie
    Sun, Huijie
    Fei, Lunke
    Li, Jinxing
    Zhang, Zheng
    Zhang, Bob
    NEURAL NETWORKS, 2021, 133 : 207 - 219
  • [42] Efficient and Effective Regularized Incomplete Multi-View Clustering
    Liu, Xinwang
    Li, Miaomiao
    Tang, Chang
    Xia, Jingyuan
    Xiong, Jian
    Liu, Li
    Kloft, Marius
    Zhu, En
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (08) : 2634 - 2646
  • [43] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [44] Twin Reciprocal Completion for Incomplete Multi-View Clustering
    Zheng, Qinghai
    Tang, Haoyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13201 - 13212
  • [45] Balance guided incomplete multi-view spectral clustering
    Sun, Lilei
    Wen, Jie
    Liu, Chengliang
    Fei, Lunke
    Li, Lusi
    NEURAL NETWORKS, 2023, 166 : 260 - 272
  • [46] Dual Completion Learning for Incomplete Multi-View Clustering
    Shen, Qiangqiang
    Zhang, Xuanqi
    Wang, Shuqin
    Li, Yuanman
    Liang, Yongsheng
    Chen, Yongyong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 455 - 467
  • [47] Local structure learning for incomplete multi-view clustering
    Yongchun Wang
    Youlong Yang
    Tong Ning
    Applied Intelligence, 2024, 54 : 3308 - 3324
  • [48] Structural Deep Incomplete Multi-view Clustering Network
    Wen, Jie
    Wu, Zhihao
    Zhang, Zheng
    Fei, Lunke
    Zhang, Bob
    Xu, Yong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3538 - 3542
  • [49] Incomplete multi-view clustering via diffusion completion
    Fang, Sifan
    Yang, Zuyuan
    Chen, Junhang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55889 - 55902
  • [50] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540