Learning Biological Dynamics From Spatio-Temporal Data by Gaussian Processes

被引:0
|
作者
Lifeng Han
Changhan He
Huy Dinh
John Fricks
Yang Kuang
机构
[1] University of Colorado,Department of Mathematics
[2] University of California,Department of Mathematics
[3] New York University,Courant Institute of Mathematical
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Bulletin of Mathematical Biology | 2022年 / 84卷
关键词
Spatio-temporal data; Gaussian processes; Forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
Model discovery methods offer a promising way to understand biology from data. We propose a method to learn biological dynamics from spatio-temporal data by Gaussian processes. This approach is essentially “equation free” and hence avoids model derivation, which is often difficult due to high complexity of biological processes. By exploiting the local nature of biological processes, dynamics can be learned with data sparse in time. When the length scales (hyperparameters) of the squared exponential covariance function are tuned, they reveal key insights of the underlying process. The squared exponential covariance function also simplifies propagation of uncertainty in multi-step forecasting. After evaluating the performance of the method on synthetic data, we demonstrate a case study on real image data of E. coli colony.
引用
收藏
相关论文
共 50 条
  • [21] Boundary iterative learning control for repetitive spatio-temporal processes
    Patan, Maciej
    Klimkowicz, Kamil
    Patan, Krzysztof
    Rogers, Eric
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4632 - 4637
  • [22] GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data
    Nonato, Luis Gustavo
    do Carmo, Fabiano Petronetto
    Silva, Claudio T.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (08) : 3481 - 3492
  • [23] STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data
    Hyun, Jung Won
    Li, Yimei
    Huang, Chao
    Styner, Martin
    Lin, Weili
    Zhu, Hongtu
    NEUROIMAGE, 2016, 134 : 550 - 562
  • [24] An additive approximate Gaussian process model for large spatio-temporal data
    Ma, Pulong
    Konomi, Bledar A.
    Kang, Emily L.
    ENVIRONMETRICS, 2019, 30 (08)
  • [25] Spatio-temporal dynamics in glycolysis
    Mair, T
    Warnke, C
    Müller, SC
    FARADAY DISCUSSIONS, 2001, 120 : 249 - 259
  • [26] Spatio-temporal dynamics in graphene
    Jago, Roland
    Perea-Causin, Rauel
    Brem, Samuel
    Malic, Ermin
    NANOSCALE, 2019, 11 (20) : 10017 - 10022
  • [27] Swarm intelligence for achieving the global maximum using spatio-temporal Gaussian processes
    Choi, Jongeun
    Lee, Joonho
    Oh, Songhwai
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 135 - +
  • [28] Spatio-temporal models of mental processes from fMRI
    Janoos, Firdaus
    Machiraju, Raghu
    Singh, Shantanu
    Morocz, Istvan Akos
    NEUROIMAGE, 2011, 57 (02) : 362 - 377
  • [29] Learning from the Users for Spatio-Temporal Data Visualization Explorations on Social Events
    Cay, Damla
    Yantac, Asim Evren
    Design, User Experience, and Usability: Technological Contexts, Pt III, 2016, 9748 : 124 - 135
  • [30] Learning a spatio-temporal correlation
    Narain, D.
    Mamassian, P.
    van Beers, R. J.
    Smeets, J. B. J.
    Brenner, E.
    PERCEPTION, 2012, 41 : 58 - 58