Derivatives and Fisher information of bivariate copulas

被引:0
|
作者
Ulf Schepsmeier
Jakob Stöber
机构
[1] Technische Universität München,Lehrstuhl für Mathematische Statistik
来源
Statistical Papers | 2014年 / 55卷
关键词
Copula; Expected information; Observed information; Derivatives; 62F10; 62F12; 62F99;
D O I
暂无
中图分类号
学科分类号
摘要
Data sets with complex relationships between random variables are increasingly studied in statistical applications. A popular approach to model their dependence is the use of copula functions. Our contribution is to derive expressions for the observed and expected information for several bivariate copula families, in particular for the Student’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-copula. Further likelihood derivatives which are required for numerical implementations are computed and a numerically stable implementation is provided in the R-package VineCopula. Using a real world data set of stock returns, we demonstrate the applicability of our approach for the routinely calculation of standard errors. In particular, we illustrate how this prevents overestimating the time-variation of dependence parameters in a rolling window analysis.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条