Derivatives and Fisher information of bivariate copulas

被引:0
|
作者
Ulf Schepsmeier
Jakob Stöber
机构
[1] Technische Universität München,Lehrstuhl für Mathematische Statistik
来源
Statistical Papers | 2014年 / 55卷
关键词
Copula; Expected information; Observed information; Derivatives; 62F10; 62F12; 62F99;
D O I
暂无
中图分类号
学科分类号
摘要
Data sets with complex relationships between random variables are increasingly studied in statistical applications. A popular approach to model their dependence is the use of copula functions. Our contribution is to derive expressions for the observed and expected information for several bivariate copula families, in particular for the Student’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-copula. Further likelihood derivatives which are required for numerical implementations are computed and a numerically stable implementation is provided in the R-package VineCopula. Using a real world data set of stock returns, we demonstrate the applicability of our approach for the routinely calculation of standard errors. In particular, we illustrate how this prevents overestimating the time-variation of dependence parameters in a rolling window analysis.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条
  • [1] Derivatives and Fisher information of bivariate copulas
    Schepsmeier, Ulf
    Stoeber, Jakob
    STATISTICAL PAPERS, 2014, 55 (02) : 525 - 542
  • [2] Approximation of bivariate copulas by patched bivariate Frechet copulas
    Zheng, Yanting
    Yang, Jingping
    Huang, Jianhua Z.
    INSURANCE MATHEMATICS & ECONOMICS, 2011, 48 (02): : 246 - 256
  • [3] A proper scoring rule for minimum information bivariate copulas
    Chen, Yici
    Sei, Tomonari
    JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 201
  • [4] FISHER INFORMATION FOR A BIVARIATE EXTREME VALUE DISTRIBUTION
    OAKES, D
    MANATUNGA, AK
    BIOMETRIKA, 1992, 79 (04) : 827 - 832
  • [5] A recipe for bivariate copulas
    Key, Eric
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (21) : 6416 - 6420
  • [6] Expansions for bivariate copulas
    Nadarajah, Saralees
    STATISTICS & PROBABILITY LETTERS, 2015, 100 : 77 - 84
  • [7] Perturbation of bivariate copulas
    Mesiar, Radko
    Komornikova, Magda
    Komornik, Jozef
    FUZZY SETS AND SYSTEMS, 2015, 268 : 127 - 140
  • [8] Fisher information for Downton's bivariate exponential distribution
    Shi, DJ
    Lai, CD
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 60 (02) : 123 - 127
  • [9] A class of multivariate copulas with bivariate Frechet marginal copulas
    Yang, Jingping
    Qi, Yongcheng
    Wang, Ruodu
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 139 - 147
  • [10] A class of multivariate copulas based on products of bivariate copulas
    Mazo, Gildas
    Girard, Stephane
    Forbes, Florence
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 363 - 376