Chaotic Orbits for Systems of Nonlocal Equations

被引:0
|
作者
Serena Dipierro
Stefania Patrizi
Enrico Valdinoci
机构
[1] University of Melbourne,School of Mathematics and Statistics
[2] University of Western Australia,School of Mathematics and Statistics
[3] The University of Texas at Austin,Department of Mathematics
[4] Weierstraß Institut für Angewandte Analysis und Stochastik,Dipartimento di Matematica
[5] Università degli studi di Milano,Istituto di Matematica Applicata e Tecnologie Informatiche
[6] Consiglio Nazionale delle Ricerche,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.
引用
收藏
页码:583 / 626
页数:43
相关论文
共 50 条
  • [21] Where and when orbits of chaotic systems prefer to go
    Bolding, M.
    Bunimovich, L. A.
    NONLINEARITY, 2019, 32 (05) : 1731 - 1771
  • [22] On the chaotic orbits of disk-star-planet systems
    Jiang, IG
    Yeh, LC
    ASTRONOMICAL JOURNAL, 2004, 128 (02): : 923 - 932
  • [23] Directing orbits of chaotic systems by particle swarm optimization
    Liu, B
    Wang, L
    Tang, F
    Huang, D
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 454 - 461
  • [24] Detecting unstable periodic orbits of chaotic dynamical systems
    Schmelcher, P
    Diakonos, FK
    PHYSICAL REVIEW LETTERS, 1997, 78 (25) : 4733 - 4736
  • [25] Accurate determination of heteroclinic orbits in chaotic dynamical systems
    Li, Jizhou
    Tomsovic, Steven
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (13)
  • [26] Optimal periodic orbits of continuous time chaotic systems
    Yang, Tsung-Hsun
    Hunt, Brian R.
    Ott, Edward
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 1950 - 1959
  • [27] A new stochastic algorithm to direct orbits of chaotic systems
    Cui, Zhihua
    Cai, Xingjuan
    Zeng, Jianchao
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 43 (04) : 366 - 371
  • [28] APOA with parabola model for directing orbits of chaotic systems
    Cui, Zhihua
    Fan, Shujing
    Zeng, Jianchao
    Shi, Zhongzhi
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2013, 5 (01) : 67 - 72
  • [29] Periodic orbits in chaotic systems simulated at low precision
    Klower, Milan
    Coveney, Peter V.
    Paxton, E. Adam
    Palmer, Tim N.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Adaptive stabilization of unstable periodic orbits of chaotic systems
    Tian, YP
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 3195 - 3199