Chaotic Orbits for Systems of Nonlocal Equations

被引:0
|
作者
Serena Dipierro
Stefania Patrizi
Enrico Valdinoci
机构
[1] University of Melbourne,School of Mathematics and Statistics
[2] University of Western Australia,School of Mathematics and Statistics
[3] The University of Texas at Austin,Department of Mathematics
[4] Weierstraß Institut für Angewandte Analysis und Stochastik,Dipartimento di Matematica
[5] Università degli studi di Milano,Istituto di Matematica Applicata e Tecnologie Informatiche
[6] Consiglio Nazionale delle Ricerche,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of nonlocal equations driven by a perturbed periodic potential. We construct multibump solutions that connect one integer point to another one in a prescribed way. In particular, heteroclinic, homoclinic and chaotic trajectories are constructed. This is the first attempt to consider a nonlocal version of this type of dynamical systems in a variational setting and the first result regarding symbolic dynamics in a fractional framework.
引用
收藏
页码:583 / 626
页数:43
相关论文
共 50 条
  • [1] Chaotic Orbits for Systems of Nonlocal Equations
    Dipierro, Serena
    Patrizi, Stefania
    Valdinoci, Enrico
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) : 583 - 626
  • [2] Optimal periodic orbits of chaotic systems
    Hunt, BR
    Ott, E
    PHYSICAL REVIEW LETTERS, 1996, 76 (13) : 2254 - 2257
  • [3] Orbits' statistics in chaotic dynamical systems
    Arnold, V.
    NONLINEARITY, 2008, 21 (07) : T109 - T112
  • [4] Clustering of periodic orbits in chaotic systems
    Gutkin, Boris
    Al Osipov, Vladimir
    NONLINEARITY, 2013, 26 (01) : 177 - 200
  • [5] Sensitivity of long periodic orbits of chaotic systems
    Lasagna, D.
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [6] Coding of chaotic orbits with recurrent fuzzy systems
    Sokolov, A
    Wagenknecht, M
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATIONS, 2005, : 739 - 746
  • [7] CREATING PERIODIC-ORBITS IN CHAOTIC SYSTEMS
    GLASS, K
    RENTON, M
    JUDD, K
    MEES, A
    PHYSICS LETTERS A, 1995, 203 (2-3) : 107 - 114
  • [8] ALTERNATIVE METHOD TO FIND ORBITS IN CHAOTIC SYSTEMS
    HANSEN, KT
    PHYSICAL REVIEW E, 1995, 52 (03): : 2388 - 2391
  • [9] DIRECTING ORBITS OF CHAOTIC DYNAMICAL-SYSTEMS
    PASKOTA, M
    MEES, AI
    TEO, KL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02): : 573 - 583
  • [10] Controlling chaotic orbits in mechanical systems with impacts
    de Souza, SLT
    Caldas, IL
    CHAOS SOLITONS & FRACTALS, 2004, 19 (01) : 171 - 178