Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations

被引:0
|
作者
Anotida Madzvamuse
Hussaini S. Ndakwo
Raquel Barreira
机构
[1] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[2] University of Sussex,Department of Mathematics, School of Mathematical and Physical Sciences
[3] Escola Superior de Tecnologia do Barreiro/IPS,Rua Américo da Silva Marinho
来源
关键词
Cross-diffusion reaction systems; Cross-diffusion driven instability; Parameter space identification; Pattern formation; Planary domains; Finite element method; 35K57; 92Bxx; 37D99; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30–39, 1972; Prigogine and Lefever, J Chem Phys 48:1695–1700, 1968; Schnakenberg, J Theor Biol 81:389–400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator–inhibitor mechanism as premises for pattern formation, activator–activator, inhibitor–inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} and v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v$$\end{document} components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
引用
收藏
页码:709 / 743
页数:34
相关论文
共 50 条
  • [31] Monte Carlo simulations of bosonic reaction-diffusion systems
    Park, SC
    PHYSICAL REVIEW E, 2005, 72 (03):
  • [32] Hybrid stochastic simulations of intracellular reaction-diffusion systems
    Kalantzis, Georgios
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2009, 33 (03) : 205 - 215
  • [33] HYBRID SIMULATIONS OF REACTION-DIFFUSION SYSTEMS IN POROUS MEDIA
    Tartakovsky, A. M.
    Tartakovsky, D. M.
    Scheibe, T. D.
    Meakin, P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06): : 2799 - 2816
  • [34] Global solvability of a class of reaction-diffusion systems with cross-diffusion
    Wang, Zhi-An
    Wu, Leyun
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [35] Stability and cross-diffusion-driven instability for a water-vegetation model with the infiltration feedback effect
    Gaihui Guo
    Shihan Zhao
    Danfeng Pang
    Youhui Su
    Zeitschrift für angewandte Mathematik und Physik, 2024, 75
  • [36] Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1112 - 1132
  • [37] Parameter Spaces for Cross-Diffusive-Driven Instability in a Reaction-Diffusion System on an Annular Domain
    Yigit, Gulsemay
    Sarfaraz, Wakil
    Barreira, Raquel
    Madzvamuse, Anotida
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2025,
  • [38] Cross-diffusion-driven gravitational instability in a Hele-Shaw cell saturated with a ternary solution
    Kim, Min Chan
    Song, Kwang Ho
    PHYSICS OF FLUIDS, 2016, 28 (08)
  • [39] Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems
    Madzvamuse, Anotida
    Chung, Andy H. W.
    Venkataraman, Chandrasekhar
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2175):
  • [40] Instability and reaction-diffusion transport of bacteria
    Lewis, RW
    Pao, WKS
    Yang, XS
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2004, 20 (10): : 777 - 787