共 50 条
Stable equivalence of selfinjective algebras of tilted type
被引:0
|作者:
Andrzej Skowroński
Kunio Yamagata
机构:
[1] Faculty of Mathematics and Informatics,
[2] Nicholas Copernicus University,undefined
[3] Chopina 12/18,undefined
[4] PL- 87-100 Toruń,undefined
[5] Poland,undefined
[6] Department of Mathematics,undefined
[7] Tokyo University of Agriculture and Technology,undefined
[8] Fuchu,undefined
[9] Tokyo 183,undefined
[10] Japan,undefined
来源:
关键词:
Tilted Algebra;
Dynkin Type;
Nakayama Automorphism;
Repetitive Algebra;
Selfinjective Algebra;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A finite dimensional K-algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\it\Lambda $\end{document} is called selfinjective of tilted type if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\it\Lambda $\end{document} is a quotient \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\widehat {B}/(\varphi \nu _{\hat {B}})$\end{document}, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\widehat {B}$\end{document} is the repetitive algebra of a tilted algebra B not of Dynkin type, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\nu _{\hat {B}}$\end{document} is the Nakayama automorphism of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\widehat {B}$\end{document}, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\varphi $\end{document} is a positive automorphism of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\widehat {B}$\end{document}. We prove that a selfinjective algebra A is stably equivalent to a selfinjective algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\it\Lambda $\end{document} of tilted type if and only if A is socle equivalent to a selfinjective algebra \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\it\Lambda $\end{document} of tilted type.
引用
收藏
页码:341 / 350
页数:9
相关论文