Machine learning applications for early detection of esophageal cancer: a systematic review

被引:11
|
作者
Hosseini, Farhang [1 ]
Asadi, Farkhondeh [1 ]
Emami, Hassan [1 ]
Ebnali, Mahdi [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Allied Med Sci, Dept Hlth Informat Technol & Management, Tehran, Iran
[2] Harvard Med Sch, Dept Emergency Med, Boston, MA USA
关键词
Machine learning; Deep learning; Esophagus; Esophageal Cancer; Early detection; AUTOMATIC CLASSIFICATION; ENDOSCOPIC IMAGES; SEGMENTATION; DIAGNOSIS; NETWORK; METAANALYSIS; RECOGNITION; LESIONS;
D O I
10.1186/s12911-023-02235-y
中图分类号
R-058 [];
学科分类号
摘要
IntroductionEsophageal cancer (EC) is a significant global health problem, with an estimated 7th highest incidence and 6th highest mortality rate. Timely diagnosis and treatment are critical for improving patients' outcomes, as over 40% of patients with EC are diagnosed after metastasis. Recent advances in machine learning (ML) techniques, particularly in computer vision, have demonstrated promising applications in medical image processing, assisting clinicians in making more accurate and faster diagnostic decisions. Given the significance of early detection of EC, this systematic review aims to summarize and discuss the current state of research on ML-based methods for the early detection of EC.MethodsWe conducted a comprehensive systematic search of five databases (PubMed, Scopus, Web of Science, Wiley, and IEEE) using search terms such as "ML", "Deep Learning (DL (", "Neural Networks (NN)", "Esophagus", "EC" and "Early Detection". After applying inclusion and exclusion criteria, 31 articles were retained for full review.ResultsThe results of this review highlight the potential of ML-based methods in the early detection of EC. The average accuracy of the reviewed methods in the analysis of endoscopic and computed tomography (CT (images of the esophagus was over 89%, indicating a high impact on early detection of EC. Additionally, the highest percentage of clinical images used in the early detection of EC with the use of ML was related to white light imaging (WLI) images. Among all ML techniques, methods based on convolutional neural networks (CNN) achieved higher accuracy and sensitivity in the early detection of EC compared to other methods.ConclusionOur findings suggest that ML methods may improve accuracy in the early detection of EC, potentially supporting radiologists, endoscopists, and pathologists in diagnosis and treatment planning. However, the current literature is limited, and more studies are needed to investigate the clinical applications of these methods in early detection of EC. Furthermore, many studies suffer from class imbalance and biases, highlighting the need for validation of detection algorithms across organizations in longitudinal studies.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Applications of Machine Learning in Palliative Care: A Systematic Review
    Vu, Erwin
    Steinmann, Nina
    Schroder, Christina
    Forster, Robert
    Aebersold, Daniel M.
    Eychmuller, Steffen
    Cihoric, Nikola
    Hertler, Caroline
    Windisch, Paul
    Zwahlen, Daniel R.
    CANCERS, 2023, 15 (05)
  • [22] Applications of machine learning in the brewing process: a systematic review
    Philipp Nettesheim
    Peter Burggräf
    Fabian Steinberg
    Discover Artificial Intelligence, 4 (1):
  • [23] A systematic literature review of machine learning applications in IoT
    Gherbi, Chirihane
    Senouci, Oussama
    Harbi, Yasmine
    Medani, Khedidja
    Aliouat, Zibouda
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (11)
  • [24] Applications of Machine Learning in Pediatric Hydrocephalus: A Systematic Review
    Pahwa, Bhavya
    Bali, Ojasvini
    Goyal, Sarvesh
    Kedia, Shweta
    NEUROLOGY INDIA, 2021, 69 : S568 - +
  • [25] Machine Learning Applications in Baseball: A Systematic Literature Review
    Koseler, Kaan
    Stephan, Matthew
    APPLIED ARTIFICIAL INTELLIGENCE, 2017, 31 (9-10) : 745 - 763
  • [26] Machine Learning Applications in Psoriasis Treatment: A Systematic Review
    McMullen, Eric
    Al-Naser, Yousif
    Chung, Jonathan
    Yeung, Jensen
    JOURNAL OF CUTANEOUS MEDICINE AND SURGERY, 2024, 28 (03) : 301 - 302
  • [27] Applications of machine learning in addiction studies: A systematic review
    Mak, Kwok Kei
    Lee, Kounseok
    Park, Cheolyong
    PSYCHIATRY RESEARCH, 2019, 275 : 53 - 60
  • [28] Applications of machine learning to BIM: A systematic literature review
    Zabin, Asem
    Gonzalez, Vicente A.
    Zou, Yang
    Amor, Robert
    ADVANCED ENGINEERING INFORMATICS, 2022, 51
  • [29] Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review
    Jones, O. T.
    Matin, R. N.
    van der Schaar, M.
    Bhayankaram, K. Prathivadi
    Ranmuthu, C. K., I
    Islam, M. S.
    Behiyat, D.
    Boscott, R.
    Calanzani, N.
    Emery, J.
    Williams, H. C.
    Walter, F. M.
    LANCET DIGITAL HEALTH, 2022, 4 (06): : E466 - E476
  • [30] Cyberbullying detection and machine learning: a systematic literature review
    Balakrisnan, Vimala
    Kaity, Mohammed
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1375 - 1416