Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups

被引:0
|
作者
V. S. Guliyev
机构
[1] Baku State University,Institute of Applied Mathematics
[2] Dumlupinar University,Department of Mathematics
[3] RUDN University,S.M. Nikolskii Institute of Mathematics
来源
Analysis and Mathematical Physics | 2020年 / 10卷
关键词
Carnot group; Fractional maximal operator; Generalized weighted Morrey space; Commutator; Homogeneous dimension; Primary 42B25; 42B35; 43A15; 43A80;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we shall give a characterization for the strong and weak type Spanne type boundedness of the fractional maximal operator Mα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\alpha }$$\end{document}, 0≤α<Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <Q$$\end{document} on Carnot group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}$$\end{document} on generalized weighted Morrey spaces Mp,φ(G,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{p,\varphi }({{\mathbb {G}}},w)$$\end{document}, where Q is the homogeneous dimension of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}$$\end{document}. Also we give a characterization for the Spanne type boundedness of the fractional maximal commutator operator Mb,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{b,\alpha }$$\end{document} on generalized weighted Morrey spaces.
引用
收藏
相关论文
共 50 条
  • [31] MAXIMAL AND SINGULAR INTEGRAL OPERATORS AND THEIR COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Badalov, Xayyam A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 41 - 61
  • [32] Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces
    Fatih Deringoz
    Vagif S Guliyev
    Sabir G Hasanov
    Journal of Inequalities and Applications, 2016
  • [33] WEIGHTED ESTIMATES FOR BILINEAR FRACTIONAL INTEGRAL OPERATOR OF ITERATED PRODUCT COMMUTATORS ON MORREY SPACES
    Li, Xiang
    He, Qianjun
    Yan, Dunyan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 1249 - 1267
  • [34] Characterizations for the fractional maximal operators on Carleson curves in local generalized Morrey spaces
    Armutcu, Hatice
    Eroglu, Ahmet
    Isayev, Fatai
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (01) : 23 - 38
  • [35] Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces
    Deringoz, Fatih
    Guliyev, Vagif S.
    Hasanov, Sabir G.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [36] A Note on the Maximal Operator on Weighted Morrey Spaces
    A. K. Lerner
    Analysis Mathematica, 2023, 49 : 1073 - 1086
  • [37] A Note on the Maximal Operator on Weighted Morrey Spaces
    Lerner, A. K.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1073 - 1086
  • [38] Commutators of Fractional Maximal Operator on Orlicz Spaces
    V. S. Guliyev
    F. Deringoz
    S. G. Hasanov
    Mathematical Notes, 2018, 104 : 498 - 507
  • [39] Boundedness of the fractional Hardy-Littlewood maximal operator on weighted Morrey spaces
    Jing Zhou
    Fayou Zhao
    Analysis and Mathematical Physics, 2022, 12
  • [40] Commutators of Fractional Maximal Operator on Orlicz Spaces
    Guliyev, V. S.
    Deringoz, F.
    Hasanov, S. G.
    MATHEMATICAL NOTES, 2018, 104 (3-4) : 498 - 507