Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study

被引:0
|
作者
Chang Hu
Lu Li
Weipeng Huang
Tong Wu
Qiancheng Xu
Juan Liu
Bo Hu
机构
[1] Zhongnan Hospital of Wuhan University,Department of Critical Care Medicine
[2] Clinical Research Center of Hubei Critical Care Medicine,School of Computer Science
[3] Wuhan University,undefined
来源
关键词
Machine learning; Algorithm; Sepsis; Critically ill; Mortality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1117 / 1132
页数:15
相关论文
共 50 条
  • [21] Interpretable Machine Learning Structure for an Early Prediction of Lane Changes
    Gallitz, Oliver
    De Candido, Oliver
    Botsch, Michael
    Melz, Ron
    Utschick, Wolfgang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 337 - 349
  • [22] Development and validation of interpretable machine learning models for postoperative pneumonia prediction
    Xiang, Bingbing
    Liu, Yiran
    Jiao, Shulan
    Zhang, Wensheng
    Wang, Shun
    Yi, Mingliang
    FRONTIERS IN PUBLIC HEALTH, 2024, 12
  • [23] Early prediction of sepsis in intensive care patients using the machine learning algorithm NAVOY® Sepsis, a prospective randomized clinical validation study
    Persson, Inger
    Macura, Andreas
    Becedas, David
    Sjovall, Fredrik
    JOURNAL OF CRITICAL CARE, 2024, 80
  • [24] Interpretable machine learning model for early morbidity risk prediction in patients with sepsis-induced coagulopathy: a multi-center study
    Tan, Ruimin
    Ge, Chen
    Wang, Jingmei
    Yang, Zinan
    Guo, He
    Yan, Yating
    Du, Quansheng
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [25] Early Prediction of Sepsis Based on Machine Learning Algorithm
    Zhao, Xin
    Shen, Wenqian
    Wang, Guanjun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [26] An interpretable deep-learning model for early prediction of sepsis in the emergency department
    Zhang, Dongdong
    Yin, Changchang
    Hunold, Katherine M.
    Jiang, Xiaoqian
    Caterino, Jeffrey M.
    Zhang, Ping
    PATTERNS, 2021, 2 (02):
  • [27] Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study
    Tang, Dayu
    Ma, Chengyong
    Xu, Yu
    FRONTIERS IN MEDICINE, 2024, 11
  • [28] A MACHINE LEARNING ALGORITHM FOR EARLY PREDICTION OF SEPSIS IN INTENSIVE CARE
    Sjovall, Fredrik
    Persson, Inger
    CRITICAL CARE MEDICINE, 2023, 51 (01) : 609 - 609
  • [29] Developing an Interpretable Machine Learning Model to Predict in-Hospital Mortality in Sepsis Patients: A Retrospective Temporal Validation Study
    Li, Shuhe
    Dou, Ruoxu
    Song, Xiaodong
    Lui, Ka Yin
    Xu, Jinghong
    Guo, Zilu
    Hu, Xiaoguang
    Guan, Xiangdong
    Cai, Changjie
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (03)
  • [30] Prediction and risk assessment of sepsis-associated encephalopathy in ICU based on interpretable machine learning
    Xiao Lu
    Hongyu Kang
    Dawei Zhou
    Qin Li
    Scientific Reports, 12