Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption

被引:0
|
作者
Daeho Ko
机构
[1] Process Team of Technical Division,
[2] Daesung Industrial Gases Co.,undefined
[3] Ltd.,undefined
来源
关键词
Vacuum Pressure Swing Adsorption; Carbon Molecular Sieve; Zeolite 5A; Simulation; CO; Sequestration;
D O I
暂无
中图分类号
学科分类号
摘要
The performance of carbon molecular sieves and zeolite 5A was compared in a four-bed vacuum pressure swing adsorption process. The purpose of the process is to sequester CO2 from a CH4/CO2 mixture gas, such as coal bed methane or landfill gas. This study investigated the effects of the design variables and operating variables on methane purity, recovery, and specific power through simulations of the process using the two adsorbents. The adopted design variables for the investigation are the packing bed length and the diameter of the adsorption bed, and the selected operating variables are the adsorption pressure and vacuum pressure. The simulation results show that zeolite 5A is better than carbon molecular sieve in terms of power, especially under low-pressure operating conditions with a vacuum pressure of 1,000 Pa. However, carbon molecular sieves are better in terms of purity enhancement when the vacuum pressure is higher than approximately 2,000 Pa.
引用
收藏
页码:1043 / 1051
页数:8
相关论文
共 50 条
  • [31] Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: Comparison between activated carbons and zeolites performances
    Kacem, Mariem
    Pellerano, Mario
    Delebarre, Arnaud
    FUEL PROCESSING TECHNOLOGY, 2015, 138 : 271 - 283
  • [32] Influence of Supercritical CO2 Exposure on CH4 and CO2 Adsorption Behaviors of Shale: Implications for CO2 Sequestration
    Zhou, Junping
    Xie, Shuang
    Jiang, Yongdong
    Xian, Xuefu
    Liu, Qili
    Lu, Zhaohui
    Lyu, Qiao
    ENERGY & FUELS, 2018, 32 (05) : 6073 - 6089
  • [33] Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads
    Shen, Chunzhi
    Yu, Jianguo
    Li, Ping
    Grande, Carlos A.
    Rodrigues, Alirio E.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (01): : 179 - 188
  • [34] Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery and CO2 sequestration: A molecular simulation study on the competitive adsorption of CH4 and CO2 in zeolite and organic matter
    Zhang, Kaiyi
    Jiang, Hao
    Qin, Guan
    FUEL, 2019, 249 : 119 - 129
  • [35] Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads
    Chunzhi Shen
    Jianguo Yu
    Ping Li
    Carlos A. Grande
    Alirio E. Rodrigues
    Adsorption, 2011, 17 : 179 - 188
  • [36] Equilibrium isotherms for CO, CO2, CH4 and C2H4 on the 5A molecular sieve by a simple volumetric apparatus
    Pakseresht, S
    Kazemeini, M
    Akbarnejad, MM
    SEPARATION AND PURIFICATION TECHNOLOGY, 2002, 28 (01) : 53 - 60
  • [37] Review of Competitive Adsorption of CO2/CH4 in Shale: Implications for CO2 Sequestration and Enhancing Shale Gas Recovery
    Cao, Mengyao
    Qin, Chao
    Jiang, Yongdong
    Xia, Peng
    Wang, Ke
    ACS OMEGA, 2025,
  • [38] The Diffusion Behavior of CO2 Adsorption from a CO2/N2 Gas Mixture on Zeolite 5A in a Fixed-Bed Column
    Boonchuay, Arunaporn
    Worathanakul, Patcharin
    ATMOSPHERE, 2022, 13 (04)
  • [39] Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in Novel Activated Carbon Beads: Preparation, Measurements and Simulation
    Shao, Xiaohong
    Feng, Zhenhe
    Xue, Ruisheng
    Ma, Congcong
    Wang, Wenchuan
    Peng, Xuan
    Cao, Dapeng
    AICHE JOURNAL, 2011, 57 (11) : 3042 - 3051
  • [40] Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve
    Liu, XW
    Li, JW
    Zhou, L
    Huang, DS
    Zhou, YP
    CHEMICAL PHYSICS LETTERS, 2005, 415 (4-6) : 198 - 201