Energy of Radial Vector Fields on Compact Rank One Symmetric Spaces

被引:0
|
作者
E. Boeckx
J. C. González-Dávila
L. Vanhecke
机构
[1] Katholieke Universiteit Leuven,Department of Mathematics
[2] Universidad de La Laguna,Departamento de Matemática Fundamental, Sección de Geometría y Topología
来源
关键词
unit vector fields with singularities; energy and total bending of a unit vector field; harmonic unit vector fields; radial unit vector fields on compact rank one symmetric spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the energy (or the total bending) of unit vector fields oncompact Riemannian manifolds for which the set of its singularitiesconsists of a finite number of isolated points and a finite number ofpairwise disjoint closed submanifolds. We determine lower bounds for theenergy of such vector fields on general compact Riemannian manifolds andin particular on compact rank one symmetric spaces. For this last classof spaces, we compute explicit expressions for the total bending whenthe unit vector field is the gradient field of the distance function toa point or to special totally geodesic submanifolds (i.e., for radialunit vector fields around this point or these submanifolds).
引用
收藏
页码:29 / 52
页数:23
相关论文
共 50 条