Yang–Mills black holes in quasitopological gravity

被引:0
|
作者
Fatemeh Naeimipour
Behrouz Mirza
Fatemeh Masoumi Jahromi
机构
[1] Isfahan University of Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang–Mills theory. At first step, we consider the SO(n) and SO(n-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(n-1,1)$$\end{document} semisimple gauge groups. We obtain the analytic quartic quasitopological Yang–Mills black hole solutions. Real solutions are only accessible for the positive value of the redefined quartic quasitopological gravity coefficient, μ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{4}$$\end{document}. These solutions have a finite value and an essential singularity at the origin, r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} for space dimension higher than 8. We also probe the thermodynamic and critical behavior of the quasitopological Yang–Mills black hole. The obtained solutions may be thermally stable only in the canonical ensemble. They may also show a first order phase transition from a small to a large black hole. In the second step, we obtain the pure quasitopological Yang–Mills black hole solutions. For the positive cosmological constant and the space dimensions greater than eight, the pure quasitopological Yang–Mills solutions have the ability to produce both the asymptotically AdS and dS black holes for respectively the negative and positive constant curvatures, k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=-1$$\end{document} and k=+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=+1$$\end{document}. This is unlike the quasitopological Yang–Mills theory which can lead to just the asymptotically dS solutions for Λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda >0$$\end{document}. The pure quasitopological Yang–Mills black hole is not thermally stable.
引用
收藏
相关论文
共 50 条
  • [21] Uniqueness of zero surface gravity SU(2) Einstein-Yang/Mills black holes
    Smoller, JA
    Wasserman, AG
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (03) : 1461 - 1484
  • [22] Einstein-Yang-Mills-Lorentz black holes
    Cembranos, Jose A. R.
    Gigante Valcarcel, Jorge
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (12):
  • [23] 5D radiating black holes in Einstein-Yang-Mills-Gauss-Bonnet gravity
    Ghosh, S. G.
    PHYSICS LETTERS B, 2011, 704 (1-2) : 5 - 9
  • [24] Joule-Thomson expansion of AdS black holes in Einstein Power-Yang-mills gravity
    Biswas, Anindya
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [25] Lifshitz quartic quasitopological black holes
    Ghanaatian, M.
    Bazrafshan, A.
    Brenna, W. G.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [26] The Yang-Mills duals of small AdS black holes
    Choi, Sunjin
    Jeong, Saebyeok
    Kim, Seok
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (07):
  • [27] AdS black holes and thermal Yang-Mills correlators
    Hartnoll, SA
    Kumar, SP
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (12):
  • [28] The Einstein-Dirac-Yang/Mills equations: Black holes
    Finster, F
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOLS I AND II, 2001, 140 : 391 - 398
  • [29] Horizon properties of Einstein-Yang-Mills black holes
    Kleihaus, B
    Kunz, J
    Sood, A
    Wirschins, M
    PHYSICAL REVIEW D, 2002, 65 (06):