Yang–Mills black holes in quasitopological gravity

被引:0
|
作者
Fatemeh Naeimipour
Behrouz Mirza
Fatemeh Masoumi Jahromi
机构
[1] Isfahan University of Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang–Mills theory. At first step, we consider the SO(n) and SO(n-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(n-1,1)$$\end{document} semisimple gauge groups. We obtain the analytic quartic quasitopological Yang–Mills black hole solutions. Real solutions are only accessible for the positive value of the redefined quartic quasitopological gravity coefficient, μ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{4}$$\end{document}. These solutions have a finite value and an essential singularity at the origin, r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} for space dimension higher than 8. We also probe the thermodynamic and critical behavior of the quasitopological Yang–Mills black hole. The obtained solutions may be thermally stable only in the canonical ensemble. They may also show a first order phase transition from a small to a large black hole. In the second step, we obtain the pure quasitopological Yang–Mills black hole solutions. For the positive cosmological constant and the space dimensions greater than eight, the pure quasitopological Yang–Mills solutions have the ability to produce both the asymptotically AdS and dS black holes for respectively the negative and positive constant curvatures, k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=-1$$\end{document} and k=+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=+1$$\end{document}. This is unlike the quasitopological Yang–Mills theory which can lead to just the asymptotically dS solutions for Λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda >0$$\end{document}. The pure quasitopological Yang–Mills black hole is not thermally stable.
引用
收藏
相关论文
共 50 条
  • [1] Yang-Mills black holes in quasitopological gravity
    Naeimipour, Fatemeh
    Mirza, Behrouz
    Jahromi, Fatemeh Masoumi
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (05):
  • [2] Black holes in (quartic) quasitopological gravity
    Dehghani, M. H.
    Bazrafshan, A.
    Mann, R. B.
    Mehdizadeh, M. R.
    Ghanaatian, M.
    Vahidinia, M. H.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [3] Slowly rotating black holes in quasitopological gravity
    Fierro, Octavio
    Mora, Nicolas
    Oliva, Julio
    PHYSICAL REVIEW D, 2021, 103 (06)
  • [4] TOPOLOGICAL BLACK HOLES OF GAUSS-BONNET-YANG-MILLS GRAVITY
    Dehghani, M. H.
    Bostani, N.
    Pourhasan, R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07): : 1107 - 1117
  • [5] TOPOLOGICAL BLACK HOLES OF EINSTEIN-YANG-MILLS DILATON GRAVITY
    Dehghani, M. H.
    Bazrafshan, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (03): : 293 - 303
  • [6] Scalar quasinormal modes of black holes in Einstein-Yang-Mills gravity
    Guo, Yang
    Miao, Yan-Gang
    PHYSICAL REVIEW D, 2020, 102 (06):
  • [7] Quantum corrected Einstein-Yang-Mills black holes in semiclassical gravity
    Kain, Ben
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [8] On four-dimensional Einsteinian gravity, quasitopological gravity, cosmology and black holes
    Cisterna, Adolfo
    Grandi, Nicolas
    Oliva, Julio
    PHYSICS LETTERS B, 2020, 805
  • [9] Nonlinear Yang-Mills black holes
    Jahromi, Fatemeh Masoumi
    Mirza, Behrouz
    Naeimipour, Fatemeh
    Nasirimoghadam, Soudabe
    NUCLEAR PHYSICS B, 2023, 993
  • [10] Einstein–Yang–Mills–Lorentz black holes
    Jose A. R. Cembranos
    Jorge Gigante Valcarcel
    The European Physical Journal C, 2017, 77