A Note on the Turán Number of an Arbitrary Star Forest

被引:0
|
作者
Bing Wang
Jian-Hua Yin
机构
[1] Hainan University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Turán number; Disjoint copies; MSC 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The Turán number of a graph G, denoted by ex(n, G), is the maximum number of edges of an n-vertex simple graph having no G as a subgraph. Let Sℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\ell $$\end{document} denote the star with ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell +1$$\end{document} vertices, and let ⋃i=1kSℓi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup \limits _{i=1}^k S_{\ell _i}$$\end{document} denote the disjoint union of Sℓ1,…,Sℓk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\ell _1},\ldots ,S_{\ell _k}$$\end{document}. For k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and ℓ1≥⋯≥ℓk≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1\ge \cdots \ge \ell _k\ge 1$$\end{document}, Lidický et al. [On the Turán number of forests, Electron. J. Combin., 20(2)(2013)#P62] proved that ex(n,⋃i=1kSℓi)=max1≤i≤k{⌊(ℓi+2i-3)n-(i-1)(ℓi+i-1)2⌋}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(n,\bigcup \limits _{i=1}^k S_{\ell _i})=\max \limits _{1\le i\le k}\{\lfloor \frac{(\ell _i+2i-3)n-(i-1)(\ell _i+i-1)}{2}\rfloor \}$$\end{document} for n sufficiently large. In this paper, we further show that ex(n,⋃i=1kSℓi)=max1≤i≤k(ℓi+2i-3)n-(i-1)(ℓi+i-1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ex(n,\bigcup \limits _{i=1}^k S_{\ell _i})=\max \limits _{1\le i\le k}\left\{ \left\lfloor \frac{(\ell _i+2i-3)n-(i-1)(\ell _i+i-1)}{2}\right\rfloor \right\} \end{aligned}$$\end{document}for n≥Nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge N_k$$\end{document} by giving another proof, where Lj=max1≤i≤j{ℓi+2i-3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_j=\max \limits _{1\le i \le j} \{\ell _i+2i-3\}$$\end{document} for 2≤j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le j\le k$$\end{document} and Nk=max2≤j≤k(∑i=1j-1ℓi+1)(∑i=1j2ℓi-ℓj+2j-5)+(j-1)ℓ2-(j-2)ℓj+j2-3j+5Lj-ℓj-2j+5.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_k=\max \limits _{2\le j\le k}\left\{\left\lceil \frac{(\sum \limits _{i=1}^{j-1}\ell _i+1)(\sum \limits _{i=1}^{j} 2\ell _i-\ell _j+2j-5)+(j-1)\ell _2-(j-2)\ell _j+j^2-3j+5}{L_j-\ell _j-2j+5}\right\rceil \right\}.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] A New Construction for the Planar Turán Number of Cycles
    Gyori, Ervin
    Varga, Kitti
    Zhu, Xiutao
    GRAPHS AND COMBINATORICS, 2024, 40 (06)
  • [32] A Note on Star Chromatic Number of Graphs
    Hong Yong FUDe Zheng XIE College of Mathematics and StatisticsChongqing UniversityChongqing PRChinaCollege of Economics and Business AdministrationChongqing UniversityChongqing PRChina
    数学研究与评论, 2010, 30 (05) : 841 - 844
  • [33] A Note on Star Chromatic Number of Graphs
    Hong Yong FU1
    2.College of Economics and Business Administration
    Journal of Mathematical Research with Applications, 2010, (05) : 841 - 844
  • [34] A note on the Lipkin model in arbitrary fermion number
    Tsue, Yasuhiko
    Providencia, Constanca
    da Providencia, Joao
    Yamamura, Masatoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (08):
  • [35] Dense circuit graphs and the planar Turán number of a cycle
    Shi, Ruilin
    Walsh, Zach
    Yu, Xingxing
    Journal of Graph Theory, 1 (27-38):
  • [36] The Turán number of the triangular pyramid of 3-layers
    Ghosh, Debarun
    Győri, Ervin
    Paulos, Addisu
    Xiao, Chuanqi
    Zamora, Oscar
    Discrete Applied Mathematics, 2022, 317 : 75 - 85
  • [37] The Lower and Upper Bounds of Turán Number for Odd Wheels
    Byeong Moon Kim
    Byung Chul Song
    Woonjae Hwang
    Graphs and Combinatorics, 2021, 37 : 919 - 932
  • [38] Turán number of the odd-ballooning of complete bipartite graphs
    Peng, Xing
    Xia, Mengjie
    JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 181 - 199
  • [39] On the Turán Number of Km ∨ C2k-1
    Yan, Jingru
    GRAPHS AND COMBINATORICS, 2024, 40 (01)
  • [40] The complete value of the Turán number of 3 Kp+1
    Zhang, Liang
    Yin, Jian-Hua
    DISCRETE MATHEMATICS, 2024, 347 (05)