A Note on the Turán Number of an Arbitrary Star Forest

被引:0
|
作者
Bing Wang
Jian-Hua Yin
机构
[1] Hainan University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Turán number; Disjoint copies; MSC 05C35;
D O I
暂无
中图分类号
学科分类号
摘要
The Turán number of a graph G, denoted by ex(n, G), is the maximum number of edges of an n-vertex simple graph having no G as a subgraph. Let Sℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\ell $$\end{document} denote the star with ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell +1$$\end{document} vertices, and let ⋃i=1kSℓi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigcup \limits _{i=1}^k S_{\ell _i}$$\end{document} denote the disjoint union of Sℓ1,…,Sℓk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\ell _1},\ldots ,S_{\ell _k}$$\end{document}. For k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document} and ℓ1≥⋯≥ℓk≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1\ge \cdots \ge \ell _k\ge 1$$\end{document}, Lidický et al. [On the Turán number of forests, Electron. J. Combin., 20(2)(2013)#P62] proved that ex(n,⋃i=1kSℓi)=max1≤i≤k{⌊(ℓi+2i-3)n-(i-1)(ℓi+i-1)2⌋}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ex(n,\bigcup \limits _{i=1}^k S_{\ell _i})=\max \limits _{1\le i\le k}\{\lfloor \frac{(\ell _i+2i-3)n-(i-1)(\ell _i+i-1)}{2}\rfloor \}$$\end{document} for n sufficiently large. In this paper, we further show that ex(n,⋃i=1kSℓi)=max1≤i≤k(ℓi+2i-3)n-(i-1)(ℓi+i-1)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} ex(n,\bigcup \limits _{i=1}^k S_{\ell _i})=\max \limits _{1\le i\le k}\left\{ \left\lfloor \frac{(\ell _i+2i-3)n-(i-1)(\ell _i+i-1)}{2}\right\rfloor \right\} \end{aligned}$$\end{document}for n≥Nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge N_k$$\end{document} by giving another proof, where Lj=max1≤i≤j{ℓi+2i-3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_j=\max \limits _{1\le i \le j} \{\ell _i+2i-3\}$$\end{document} for 2≤j≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le j\le k$$\end{document} and Nk=max2≤j≤k(∑i=1j-1ℓi+1)(∑i=1j2ℓi-ℓj+2j-5)+(j-1)ℓ2-(j-2)ℓj+j2-3j+5Lj-ℓj-2j+5.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_k=\max \limits _{2\le j\le k}\left\{\left\lceil \frac{(\sum \limits _{i=1}^{j-1}\ell _i+1)(\sum \limits _{i=1}^{j} 2\ell _i-\ell _j+2j-5)+(j-1)\ell _2-(j-2)\ell _j+j^2-3j+5}{L_j-\ell _j-2j+5}\right\rceil \right\}.$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] A Note on the Turan Number of an Arbitrary Star Forest
    Wang, Bing
    Yin, Jian-Hua
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [2] On the generalized Turán number of star forests
    Liu, Yan-Jiao
    Yin, Jian-Hua
    DISCRETE APPLIED MATHEMATICS, 2025, 364 : 213 - 221
  • [3] The Turán number of surfaces
    Sankar, Maya
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (12) : 3786 - 3800
  • [4] On the Turán number of the hypercube
    Janzer, Oliver
    Sudakov, Benny
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [5] On the Turán Number of Theta Graphs
    Mingqing Zhai
    Longfei Fang
    Jinlong Shu
    Graphs and Combinatorics, 2021, 37 : 2155 - 2165
  • [6] PLANAR TURÁN NUMBER OF THE Θ 6
    Xiao, Chuanqi
    Ghosh, Debarun
    Gyori, Ervin
    Paulos, Addisu
    Zamora, Oscar
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (02) : 89 - 115
  • [7] The Turán Number Of The Fano Plane
    Peter Keevash
    Benny Sudakov*
    Combinatorica, 2005, 25 : 561 - 574
  • [8] Note on Mantel Theorem and Turán Theorem
    Ning, Bo
    GRAPHS AND COMBINATORICS, 2024, 40 (06)
  • [9] A Note on Turán Numbers for Even Wheels
    Tomasz Dzido
    Graphs and Combinatorics, 2013, 29 : 1305 - 1309
  • [10] A note on the Structure of Turán Densities of Hypergraphs
    Yuejian Peng
    Graphs and Combinatorics, 2008, 24 : 113 - 125