Uniqueness theorem for locally antipodal Delaunay sets

被引:0
|
作者
N. P. Dolbilin
A. N. Magazinov
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源
Proceedings of the Steklov Institute of Mathematics | 2016年 / 294卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2R-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose 2R-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.
引用
收藏
页码:215 / 221
页数:6
相关论文
共 50 条