Uniqueness theorem for locally antipodal Delaunay sets
被引:0
|
作者:
N. P. Dolbilin
论文数: 0引用数: 0
h-index: 0
机构:Steklov Mathematical Institute of Russian Academy of Sciences,
N. P. Dolbilin
A. N. Magazinov
论文数: 0引用数: 0
h-index: 0
机构:Steklov Mathematical Institute of Russian Academy of Sciences,
A. N. Magazinov
机构:
[1] Steklov Mathematical Institute of Russian Academy of Sciences,
来源:
Proceedings of the Steklov Institute of Mathematics
|
2016年
/
294卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove theorems on locally antipodal Delaunay sets. The main result is the proof of a uniqueness theorem for locally antipodal Delaunay sets with a given 2R-cluster. This theorem implies, in particular, a new proof of a theorem stating that a locally antipodal Delaunay set all of whose 2R-clusters are equivalent is a regular system, i.e., a Delaunay set on which a crystallographic group acts transitively.