Enhanced spatio-temporal electric load forecasts using less data with active deep learning

被引:0
|
作者
Arsam Aryandoust
Anthony Patt
Stefan Pfenninger
机构
[1] Swiss Federal Institute of Technology (ETH),Climate Policy Lab, Department of Environmental Systems Science
[2] Delft University of Technology,Faculty of Technology, Policy and Management (TPM)
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An effective way to mitigate climate change is to electrify most of our energy demand and supply the necessary electricity from renewable wind and solar power plants. Spatio-temporal predictions of electric load become increasingly important for planning this transition, while deep learning prediction models provide increasingly accurate predictions for it. The data that are used for training deep learning models, however, are usually collected at random using a passive learning approach. This naturally results in a large demand for data and associated costs for sensors such as smart meters, posing a large barrier for electric utilities when decarbonizing their grids. Here we investigate whether electric utilities can use active learning to collect a more informative subset of data by leveraging additional computation for better distributing smart meters. We predict ground-truth electric load profiles for single buildings using only remotely sensed data from aerial imagery of these buildings and meteorological conditions in the area of these buildings at different times. We find that active learning can enable 26–81% more accurate predictions using 29–46% less data at the price of 4–11 times more computation compared with passive learning.
引用
收藏
页码:977 / 991
页数:14
相关论文
共 50 条
  • [21] Deep spatio-temporal feature fusion learning for multi-step building load
    Zou, Mingxuan
    Huang, Wenjun
    Jin, Jianxiang
    Hua, Bin
    Liu, Zhiyong
    ENERGY AND BUILDINGS, 2024, 322
  • [22] Overview of Application of Deep Learning With Image Data and Spatio-temporal Data of Power Grid
    Zhang Y.
    Qiu R.
    Yang F.
    Xu S.
    Shi X.
    He X.
    Dianwang Jishu/Power System Technology, 2019, 43 (06): : 1865 - 1873
  • [23] Introduction to the Special Issue on Deep Learning for Spatio-Temporal Data: Part 2
    Wang, Senzhang
    Zhang, Junbo
    Fu, Yanjie
    Li, Yong
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [24] Spatio-temporal deep learning fire smoke detection
    Wu Fan
    Wang Hui-qin
    Wang Ke
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (08) : 1186 - 1195
  • [25] Deep learning of spatio-temporal information for visual tracking
    Gwangmin Choe
    Ilmyong Son
    Chunhwa Choe
    Hyoson So
    Hyokchol Kim
    Gyongnam Choe
    Multimedia Tools and Applications, 2022, 81 : 17283 - 17302
  • [26] Deep learning of spatio-temporal information for visual tracking
    Choe, Gwangmin
    Son, Ilmyong
    Choe, Chunhwa
    So, Hyoson
    Kim, Hyokchol
    Choe, Gyongnam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (12) : 17283 - 17302
  • [27] Terahertz spatio-temporal deep learning computed tomography
    Hung, Yi-Chun
    Chao, Ta-Hsuan
    Yu, Pojen
    Yang, Shang-Hua
    OPTICS EXPRESS, 2022, 30 (13) : 22523 - 22537
  • [28] Spatio-Temporal Deep Learning for Robotic Visuomotor Control
    Pierre, John M.
    CONFERENCE PROCEEDINGS OF 2018 4TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2018, : 94 - 103
  • [29] Deep Learning From Spatio-Temporal Data Using Orthogonal Regularizaion Residual CNN for Air Prediction
    Zhang, Lei
    Li, Dong
    Guo, Quansheng
    IEEE ACCESS, 2020, 8 : 66037 - 66047
  • [30] Online Spatio-Temporal Learning in Deep Neural Networks
    Bohnstingl, Thomas
    Wozniak, Stanislaw
    Pantazi, Angeliki
    Eleftheriou, Evangelos
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8894 - 8908