Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia

被引:0
|
作者
P. E. Meskin
A. I. Gavrilov
V. D. Maksimov
V. K. Ivanov
B. P. Churagulov
机构
[1] Russian Academy of Sciences,Kurnakov Institute of general and Inorganic Chemistry
[2] Moscow State University,undefined
来源
关键词
Zirconia; Hafnia; Local Overheating; Zirconyl Nitrate; Synthesis Duration;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the physical-chemical properties (X-ray diffraction (XRD), powder X-ray diffraction, TGA, TEM, and BET) of titania, zirconia, and hafnia nanopowders (d = 10–15 nm) synthesized from amorphous titanyl hydroxide TiO2 · nH2O, zirconyl hydroxide ZrO(OH)2 · nH2O, and hafnyl hydroxide HfO(OH)2 · nH2O using hydrothermal (HT), hydrothermal/microwave (HT-MW), and hydrothermal/ultrasonic (HT-US) methods at 150, 180, and 250°C with treatment lasting 0.5–24 h. Titania, zirconia, and hafnia crystallization from amorphous hydroxides is substantially enhanced, and the percentage of the thermally stable zirconia phase (m-ZrO2) in the HT-MW and HT-US processes increases compared to conventional HT synthesis. The observed similar effects have completely different causes. A common factor in both cases is likely the uniformity of heating of treated suspensions. Local overheating in the reaction mixture, which appears during both ultrasonication and microwave treatment, can also play a role in accelerating the hydrothermal processes.
引用
收藏
页码:1648 / 1656
页数:8
相关论文
共 50 条
  • [21] Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach
    Nath, Soumav
    Biswas, Ashik
    Kour, Prachi P.
    Sarma, Loka S.
    Sur, Ujjal Kumar
    Ankamwar, Balaprasad G.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (08) : 5390 - 5396
  • [22] Hydrothermal Synthesis of Nanostructured Titania
    Yoshito, Walter Kenji
    Ferreira, Nildemar A. M.
    Coutinho Rumbao, Ana Carolina S.
    Lazar, Dolores R. R.
    Ussui, Valter
    ADVANCED POWDER TECHNOLOGY VII, 2010, 660-661 : 788 - 793
  • [23] Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment
    Boytsova, O. V.
    Shekunova, T. O.
    Baranchikov, A. E.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2015, 60 (05) : 546 - 551
  • [24] Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders
    Pires, F. I.
    Joanni, E.
    Savu, R.
    Zaghete, M. A.
    Longo, E.
    Varela, J. A.
    MATERIALS LETTERS, 2008, 62 (02) : 239 - 242
  • [25] Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment
    O. V. Boytsova
    T. O. Shekunova
    A. E. Baranchikov
    Russian Journal of Inorganic Chemistry, 2015, 60 : 546 - 551
  • [26] SYNTHESIS OF NANOCRYSTALLINE YIG USING MICROWAVE-HYDROTHERMAL METHOD
    Sadhana, K.
    Shinde, R. S.
    Murthy, S. R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (17): : 3637 - 3642
  • [27] Hydrothermal and microwave-assisted synthesis of nanocrystalline ZnO photocatalysts
    Ivanov, Vladimir K.
    Shaporev, Alexey S.
    Sharikov, Felix Yu.
    Baranchikov, Alexander Ye.
    SUPERLATTICES AND MICROSTRUCTURES, 2007, 42 (1-6) : 421 - 424
  • [28] Microwave-hydrothermal synthesis of nanocrystalline Pr-doped zirconia powders at pressures up to 8 MPa
    Bondioli, F
    Ferrari, AM
    Braccini, S
    Leonelli, C
    Pellacani, GC
    Opalinska, A
    Chudoba, T
    Grzanka, E
    Palosz, B
    Lojkowski, W
    INTERFACIAL EFFECTS AND NOVEL PROPERTIES OF NANOMATERIALS, 2003, 94 : 193 - 196
  • [29] Synthesis of nanocrystalline solid solutions based on zirconia and hafnia
    T. I. Panova
    V. B. Glushkova
    A. E. Lapshin
    Glass Physics and Chemistry, 2008, 34
  • [30] Synthesis of nanocrystalline solid solutions based on zirconia and hafnia
    Panova, T. I.
    Glushkova, V. B.
    Lapshin, A. E.
    GLASS PHYSICS AND CHEMISTRY, 2008, 34 (02) : 206 - 212