On the Representations of Bell’s Operators in Quantum Mechanics

被引:0
|
作者
S. P. Sorella
机构
[1] UERJ – Universidade do Estado do Rio de Janeiro,Instituto de Física – Departamento de Física Teórica
来源
Foundations of Physics | 2023年 / 53卷
关键词
Entanglement; Bell's inequality; Quantum Mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
We point out that, when the dimension of the Hilbert space is greater than two, Bell’s operators entering the Bell-CHSH inequality do exhibit inequivalent unitary matrix representations. Although the Bell-CHSH inequality turns out to be violated, the size of the violation is different for different representations, the maximum violation being given by Tsirelson’s bound. The feature relies on a pairing mechanism between the modes of the Hilbert space of the system.
引用
收藏
相关论文
共 50 条
  • [41] Is Bell's Theorem Relevant to Quantum Mechanics? On Locality and Non-Commuting Observables
    Matzkin, A.
    FOUNDATIONS OF PROBABILITY AND PHYSICS - 5, 2009, 1101 : 339 - 348
  • [42] Proposal to Test a Transient Deviation from Quantum Mechanics' Predictions for Bell's Experiment
    Hnilo, Alejandro Andres
    Agueero, Monica Beatriz
    Kovalsky, Marcelo Gregorio
    ENTROPY, 2021, 23 (12)
  • [43] DOES QUANTUM-MECHANICS VIOLATE THE BELL INEQUALITIES
    SANTOS, E
    PHYSICAL REVIEW LETTERS, 1991, 66 (11) : 1388 - 1390
  • [44] Bell nonlocality in maximal-length quantum mechanics
    Bosso, Pasquale
    Illuminati, Fabrizio
    Petruzziello, Luciano
    Wagner, Fabian
    PHYSICS LETTERS B, 2023, 845
  • [45] Bell inequalities in phase space and their violation in quantum mechanics
    Auberson, G
    Mahoux, G
    Roy, SM
    Singh, V
    PHYSICS LETTERS A, 2002, 300 (4-5) : 327 - 333
  • [46] Quantum Equilibrium in Stochastic de Broglie–Bohm–Bell Quantum Mechanics
    Jeroen C. Vink
    Foundations of Physics, 2023, 53
  • [47] Bell's inequality and operators' noncommutativity
    Revzen, M
    Lokajicek, M
    Mann, A
    QUANTUM AND SEMICLASSICAL OPTICS, 1997, 9 (03): : 501 - 506
  • [48] EPR, Bell, GHZ, AND HARDY THEOREMS, AND QUANTUM MECHANICS
    Socolovsky, M.
    REVISTA CUBANA DE FISICA, 2005, 22 (02): : 104 - 118
  • [49] SPEAKABLE AND UNSPEAKABLE IN QUANTUM-MECHANICS - BELL,J
    FOLSE, HJ
    INTERNATIONAL STUDIES IN PHILOSOPHY, 1991, 23 (01) : 89 - 98
  • [50] Speakable and unspeakable in quantum mechanics - Bell,JS']JS
    Goldstein, S
    SYNTHESE, 1996, 107 (01) : 145 - 165