Nitsche-mortaring for singularly perturbed convection–diffusion problems

被引:0
|
作者
Torsten Linß
Hans-Görg Roos
Martin Schopf
机构
[1] TU Dresden,Institut für Numerische Mathematik
来源
关键词
Finite element method; Mortar method; Shishkin mesh; Convection–diffusion; Supercloseness; Singular perturbation; Uniform convergence; 65N30; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper we analyse a finite element method for a singularly perturbed convection–diffusion problem with exponential boundary layers. Using a mortaring technique we combine an anisotropic triangulation of the layer region (into rectangles) with a shape regular one of the remainder of the domain. This results in a possibly non-matching (and hybrid), but layer adapted mesh of Shishkin type. We study the error of the method allowing different asymptotic behaviour of the triangulations and prove uniform convergence and a supercloseness property of the method. Numerical results supporting our analysis are presented.
引用
收藏
页码:581 / 603
页数:22
相关论文
共 50 条