On an equation arising in the boundary-layer flow of stretching/shrinking permeable surfaces

被引:0
|
作者
J. H. Merkin
I. Pop
机构
[1] University of Leeds,Department of Applied Mathematics
[2] Babeş-Bolyai University,Department of Mathematics
来源
关键词
Asymptotic solutions; Permeable stretching/shrinking surfaces; Viscous fluid;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper, Al-Housseiny and Stone (J Fluid Mech 706:597–606, 2012) considered the dynamics of a stretching surface and how this interacts with the boundary-layer flow it generates. These authors discussed the cases c=-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c= -3$$\end{document} for an elastic sheet and c=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c= -1$$\end{document} for the viscous fluid, c being representative for the stretching velocity of the sheet. The aim of the present paper is to extend the analysis of Al-Housseiny and Stone (2012) to the general values of c, to allow for both a stretching and a shrinking sheet and for the surface to be permeable through the parameter S, where S>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S>0$$\end{document} for the fluid withdrawal and S<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S < 0$$\end{document} for fluid injection. Both the cases S=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=0$$\end{document} (impermeable surface) and S≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \ne 0$$\end{document} (permeable surface) are considered for both stretching surfaces and shrinking surfaces. In all these cases, asymptotic solutions are presented for large values c and S (both withdrawal and injection).
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [21] The unsteady MHD boundary-layer flow on a shrinking sheet
    Merkin, J. H.
    Kumaran, V.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2010, 29 (05) : 357 - 363
  • [22] A study on a boundary-layer equation arising in an incompressible fluid
    Wazwaz, AM
    APPLIED MATHEMATICS AND COMPUTATION, 1997, 87 (2-3) : 199 - 204
  • [23] Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid
    Othman, Noor Adila
    Yacob, Nor Azizah
    Bachok, Norfifah
    Ishak, Anuar
    Pop, Ioan
    APPLIED THERMAL ENGINEERING, 2017, 115 : 1412 - 1417
  • [24] BOUNDARY-LAYER FLOW OVER A ROTATING PERMEABLE PLANE
    MEHTA, KN
    RAO, KN
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (06) : 2149 - 2156
  • [25] Boundary Layer Flow and Heat Transfer over a Permeable Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
    Hafidzuddin, E. H.
    Nazar, R.
    Arifin, N. M.
    Pop, I.
    JOURNAL OF APPLIED FLUID MECHANICS, 2016, 9 (04) : 2025 - 2036
  • [26] Nanofluid flow by a permeable stretching/shrinking cylinder
    N. C. Roşca
    A. V. Roşca
    I. Pop
    J. H. Merkin
    Heat and Mass Transfer, 2020, 56 : 547 - 557
  • [27] Nanofluid flow by a permeable stretching/shrinking cylinder
    Rosca, N. C.
    Rosca, A., V
    Pop, I
    Merkin, J. H.
    HEAT AND MASS TRANSFER, 2020, 56 (02) : 547 - 557
  • [28] Boundary-layer flow of a nanofluid past a stretching sheet
    Khan, W. A.
    Pop, I.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (11-12) : 2477 - 2483
  • [29] EIGENSOLUTIONS IN BOUNDARY-LAYER FLOW ADJACENT TO A STRETCHING WALL
    BANKS, WHH
    ZATURSKA, MB
    IMA JOURNAL OF APPLIED MATHEMATICS, 1986, 36 (03) : 263 - 273
  • [30] A new branch of solutions of boundary-layer flows over a permeable stretching plate
    Liao, Shi-Jun
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (06) : 819 - 830