On an equation arising in the boundary-layer flow of stretching/shrinking permeable surfaces

被引:0
|
作者
J. H. Merkin
I. Pop
机构
[1] University of Leeds,Department of Applied Mathematics
[2] Babeş-Bolyai University,Department of Mathematics
来源
关键词
Asymptotic solutions; Permeable stretching/shrinking surfaces; Viscous fluid;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent paper, Al-Housseiny and Stone (J Fluid Mech 706:597–606, 2012) considered the dynamics of a stretching surface and how this interacts with the boundary-layer flow it generates. These authors discussed the cases c=-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c= -3$$\end{document} for an elastic sheet and c=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c= -1$$\end{document} for the viscous fluid, c being representative for the stretching velocity of the sheet. The aim of the present paper is to extend the analysis of Al-Housseiny and Stone (2012) to the general values of c, to allow for both a stretching and a shrinking sheet and for the surface to be permeable through the parameter S, where S>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S>0$$\end{document} for the fluid withdrawal and S<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S < 0$$\end{document} for fluid injection. Both the cases S=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=0$$\end{document} (impermeable surface) and S≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \ne 0$$\end{document} (permeable surface) are considered for both stretching surfaces and shrinking surfaces. In all these cases, asymptotic solutions are presented for large values c and S (both withdrawal and injection).
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条