The log-Minkowski measure of asymmetry for convex bodies

被引:0
|
作者
HaiLin Jin
机构
[1] Suzhou University of Science and Technology,Department of Mathematics
来源
Geometriae Dedicata | 2018年 / 196卷
关键词
Measure of asymmetry; Mixed volume; Brunn–Minkowski inequality; Minkowski inequality; 52A10; 52A38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new measure of asymmetry, called log-Minkowski measure of asymmetry for planar convex bodies in terms of the L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document}-mixed volume, and show that triangles are the most asymmetric planar convex bodies in the sense of this measure of asymmetry.
引用
收藏
页码:27 / 34
页数:7
相关论文
共 50 条
  • [31] Deforming convex bodies in Minkowski geometry
    Rovenski, V
    Walczak, P.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (01)
  • [32] On asymmetry of some convex bodies
    Guo, Q
    Kaijser, S
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (02) : 239 - 247
  • [33] On asymmetry of some convex bodies
    Qi Guo
    Sten Kaijser
    Discrete & Computational Geometry, 2002, 27 : 239 - 247
  • [34] ASYMMETRY CLASSES OF CONVEX BODIES
    SCHNEIDER, R
    MATHEMATIKA, 1974, 21 (41) : 12 - 18
  • [35] The dual Minkowski problem for symmetric convex bodies
    Boroczky, Karoly J.
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    Zhao, Yiming
    ADVANCES IN MATHEMATICS, 2019, 356
  • [36] Bounds for Minkowski Billiard Trajectories in Convex Bodies
    Artstein-Avidan, Shiri
    Ostrover, Yaron
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (01) : 165 - 193
  • [37] Asymmetry of Convex Bodies of Constant Width
    HaiLin Jin
    Qi Guo
    Discrete & Computational Geometry, 2012, 47 : 415 - 423
  • [38] THE MEASURES OF ASYMMETRY FOR COPRODUCTS OF CONVEX BODIES
    Guo, Qi
    Guo, Jinfeng
    Su, Xunli
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (02) : 401 - 418
  • [39] Asymmetry of Convex Bodies of Constant Width
    Jin, HaiLin
    Guo, Qi
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (02) : 415 - 423
  • [40] Lp混合均值积分的log-Minkowski不等式的简化证明
    杨林
    罗淼
    谭杨
    郭俊亮
    姜小霞
    数学的实践与认识, 2020, 50 (07) : 297 - 301