In this paper, we introduce a new measure of asymmetry, called log-Minkowski measure of asymmetry for planar convex bodies in terms of the L0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_0$$\end{document}-mixed volume, and show that triangles are the most asymmetric planar convex bodies in the sense of this measure of asymmetry.
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Cent European Univ, Budapest, HungaryHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Boroczky, Karoly J.
Lutwak, Erwin
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USAHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Lutwak, Erwin
Yang, Deane
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USAHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Yang, Deane
Zhang, Gaoyong
论文数: 0引用数: 0
h-index: 0
机构:
NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USAHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Zhang, Gaoyong
Zhao, Yiming
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Math, Cambridge, MA 02139 USAHungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary