The log-Minkowski measure of asymmetry for convex bodies

被引:0
|
作者
HaiLin Jin
机构
[1] Suzhou University of Science and Technology,Department of Mathematics
来源
Geometriae Dedicata | 2018年 / 196卷
关键词
Measure of asymmetry; Mixed volume; Brunn–Minkowski inequality; Minkowski inequality; 52A10; 52A38;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new measure of asymmetry, called log-Minkowski measure of asymmetry for planar convex bodies in terms of the L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0$$\end{document}-mixed volume, and show that triangles are the most asymmetric planar convex bodies in the sense of this measure of asymmetry.
引用
收藏
页码:27 / 34
页数:7
相关论文
共 50 条