A C∞-Regularity Theorem for Nondegenerate CR Mappings

被引:0
|
作者
Bernhard Lamel
机构
[1] Universität Wien,
来源
关键词
2000 Mathematics Subject Classification: 32H02; Key words: Nondegenerate CR-mapping, regularity, finitely nondegenerate submanifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following regularity result: If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M\subset {\Bbb C}^N$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M^\prime\subset{\Bbb C}^{N^{\prime}}$\end{document} are smooth generic submanifolds and M is minimal, then every Ck-CR-map from M into M′ which is k-nondegenerate is smooth. As an application, every CR diffeomorphism of k-nondegenerate minimal submanifolds in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb C}^N$\end{document} of class Ck is smooth.
引用
收藏
页码:315 / 326
页数:11
相关论文
共 50 条