Minimal surfaces;
-mean curvature;
Integration by parts;
First and second variation;
Monotonicity of the ;
-perimeter;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider the class of minimal surfaces given by the graphical strips \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal S}}$$\end{document} in the Heisenberg group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {H}}^1}$$\end{document} and we prove that for points p along the center of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {H}}^1}$$\end{document} the quantity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\frac{\sigma_H(\mathcal S\cap B(p,r))}{r^{Q-1}}}$$\end{document} is monotone increasing. Here, Q is the homogeneous dimension of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb {H}}^1}$$\end{document} . We also prove that these minimal surfaces have maximum volume growth at infinity.
机构:
Univ Paris Saclay, Univ Paris Sud, Lab Signaux & Syst L2S, Supelec,CNRS, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, NorwayUniv Paris Saclay, Univ Paris Sud, Lab Signaux & Syst L2S, Supelec,CNRS, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
机构:
Univ Bath, Dept Math Sci, Bath BA2 7AY, EnglandUniv Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
Buseghin, Federico
Forcillo, Nicolo
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Math, E Lansing, MI 48824 USAUniv Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
Forcillo, Nicolo
Garofalo, Nicola
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, ItalyUniv Padua, Dipartimento Ingn Civile & Ambientale DICEA, Via Marzolo 9, I-35131 Padua, Italy
机构:
Laboratoire de Mathématiques Appliquées, École Nationale Supérieure de Techniques Avancées, 75739 Paris, 32, bd VictorLaboratoire de Mathématiques Appliquées, École Nationale Supérieure de Techniques Avancées, 75739 Paris, 32, bd Victor