Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips

被引:0
|
作者
D. Danielli
N. Garofalo
D. M. Nhieu
机构
[1] Purdue University,Department of Mathematics
[2] Università di Padova,Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
[3] San Diego Christian College,Department of Mathematics
来源
Mathematische Zeitschrift | 2010年 / 265卷
关键词
Minimal surfaces; -mean curvature; Integration by parts; First and second variation; Monotonicity of the ; -perimeter;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the class of minimal surfaces given by the graphical strips \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal S}}$$\end{document} in the Heisenberg group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} and we prove that for points p along the center of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} the quantity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{\sigma_H(\mathcal S\cap B(p,r))}{r^{Q-1}}}$$\end{document} is monotone increasing. Here, Q is the homogeneous dimension of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {H}}^1}$$\end{document} . We also prove that these minimal surfaces have maximum volume growth at infinity.
引用
收藏
页码:617 / 637
页数:20
相关论文
共 50 条
  • [41] Model spaces in sub-Riemannian geometry
    Grong, Erlend
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (01) : 77 - 113
  • [42] Heat Kernels in Sub-Riemannian Settings
    Lanconelli, Ermanno
    GEOMETRIC ANALYSIS AND PDES, 2009, 1977 : 35 - 61
  • [43] A sub-Riemannian maximum modulus theorem
    Buseghin, Federico
    Forcillo, Nicolo
    Garofalo, Nicola
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (01) : 143 - 150
  • [44] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794
  • [45] Sub-Riemannian geometry of parallelizable spheres
    Molina, Mauricio Godoy
    Markina, Irina
    REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (03) : 997 - 1022
  • [46] Trivializable sub-Riemannian structures on spheres
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (03): : 361 - 385
  • [47] Foucault pendulum and sub-Riemannian geometry
    Anzaldo-Meneses, A.
    Monroy-Perez, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [48] Subharmonic functions in sub-Riemannian settings
    Bonfiglioli, Andrea
    Lanconelli, Ermanno
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (02) : 387 - 441
  • [49] Uniform estimation of sub-Riemannian balls
    Jean F.
    Journal of Dynamical and Control Systems, 2001, 7 (4) : 473 - 500
  • [50] Characteristic Laplacian in Sub-Riemannian Geometry
    Daniel, Jeremy
    Ma, Xiaonan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (24) : 13290 - 13323