This paper studies payoffs in subgame perfect equilibria of two-player discounted overlapping generations games with perfect monitoring. Assuming that mixed strategies are observable and a public randomization device is available, it is shown that sufficiently patient players can obtain any payoffs in the interior of the smallest rectangle containing the feasible and strictly individually rational payoffs of the stage game, when we first choose the rate of discount and then choose the players’ lifespan. Unlike repeated games without overlapping generations, obtaining payoffs outside the feasible set of the stage game does not require unequal discounting.