Infinitely many singularities and denumerably many positive solutions for a second-order impulsive Neumann boundary value problem

被引:0
|
作者
Minmin Wang
Meiqiang Feng
机构
[1] Beijing Information Science & Technology University,School of Applied Science
来源
关键词
denumerably many positive solutions; infinitely many singularities; Neumann impulsive boundary conditions; cone expansion and compression;
D O I
暂无
中图分类号
学科分类号
摘要
Using a fixed point theorem of cone expansion and compression of norm type and a new method to deal with the impulsive term, we prove that the second-order singular impulsive Neumann boundary value problem has denumerably many positive solutions. Noticing that M>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M>0$\end{document}, our main results improve many previous results.
引用
收藏
相关论文
共 50 条