A Comparison Principle for Stochastic Integro-Differential Equations

被引:0
|
作者
Konstantinos Anastasios Dareiotis
István Gyöngy
机构
[1] School of Mathematics University of Edinburgh King’s Buildings Edinburgh,
来源
Potential Analysis | 2014年 / 41卷
关键词
Comparison principle; Itô’s formula; SPDE; Lévy processes; 60H15; 35R09;
D O I
暂无
中图分类号
学科分类号
摘要
A comparison principle for stochastic integro-differential equations driven by Lévy processes is proved. This result is obtained via an extension of an Itô formula, proved by N.V. Krylov, for the square of the norm of the positive part of L2 − valued, continuous semimartingales, to the case of discontinuous semimartingales.
引用
收藏
页码:1203 / 1222
页数:19
相关论文
共 50 条
  • [41] On integro-differential equations and their applications
    Volterra, V
    ACTA MATHEMATICA, 1912, 35 (04) : 295 - 355
  • [42] On Solvability of Integro-Differential Equations
    De Leon-Contreras, Marta
    Gyongy, Istvan
    Wu, Sizhou
    POTENTIAL ANALYSIS, 2021, 55 (03) : 443 - 475
  • [43] SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS
    SUHADOLC, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (02) : 195 - &
  • [44] Nonlinear Integro-Differential Equations
    Mahdavi, S.
    Kajani, M. Tavassoli
    JOURNAL OF MATHEMATICAL EXTENSION, 2010, 4 (02) : 107 - 117
  • [45] Neural Integro-Differential Equations
    Zappala, Emanuele
    Fonseca, Antonio H. de O.
    Moberly, Andrew H.
    Higley, Michael J.
    Abdallah, Chadi
    Cardin, Jessica A.
    van Dijk, David
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11104 - 11112
  • [46] On Solvability of Integro-Differential Equations
    Marta De León-Contreras
    István Gyöngy
    Sizhou Wu
    Potential Analysis, 2021, 55 : 443 - 475
  • [47] Symmetries of integro-differential equations
    Zawistowski, ZJ
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 269 - 276
  • [48] On a class of integro-differential equations
    Pitt, HR
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1944, 40 : 199 - 211
  • [49] A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    CHANG, SH
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (03) : 563 - 573
  • [50] On the Nonlinear Integro-Differential Equations
    Li, Chenkuan
    Beaudin, Joshua
    FRACTAL AND FRACTIONAL, 2021, 5 (03)