Rigid G2-representations and motives of type G2

被引:0
|
作者
Michael Dettweiler
Johannes Schmidt
机构
[1] Universität Bayreuth,Mathematisches Institut
[2] Ruprecht-Karls-Universität Heidelberg,Mathematisches Institut
来源
关键词
Maximal Subgroup; Galois Group; Monodromy Group; Hyperplane Arrangement; Absolute Galois Group;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G2 and which has a local monodromy of order 7 at ∞. We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the specialized motives at the points of irreducibility have motivic Galois group G2.
引用
收藏
页码:81 / 106
页数:25
相关论文
共 50 条
  • [11] Dichotomy for generic supercuspidal representations of G2
    Savin, Gordan
    Weissman, Martin H.
    COMPOSITIO MATHEMATICA, 2011, 147 (03) : 735 - 783
  • [12] A class of supercuspidal representations of G2(k)
    Savin, G
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (03): : 393 - 400
  • [13] THE MATRIX REPRESENTATIONS OF G2 .2. REPRESENTATIONS IN AN SU(3) BASIS
    LEBLANC, R
    ROWE, DJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) : 767 - 776
  • [14] On the Gaudin model of type G2
    Lu, Kang
    Mukhin, Evgeny
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (03)
  • [15] Level two vertex representations of G2(1)
    Jing, NH
    Lyerly, CM
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4355 - 4362
  • [17] Level one representations of Uq(G2(1))
    Jing, NH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) : 21 - 27
  • [18] Monodromy of elliptic curve convolution, seven-point sheaves of G2 type, and motives of Beauville type
    Collas, Benjamin
    Dettweiler, Michael
    Reiter, Stefan
    Sawin, Will
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (784): : 1 - 26
  • [19] Local Type IImetrics with holonomy in G2*
    Volkhausen, Christian
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2019, 89 (02): : 179 - 201
  • [20] Lax operator algebras of type G2
    Sheinman, O. K.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 151 - 153