Rigid G2-representations and motives of type G2

被引:0
|
作者
Michael Dettweiler
Johannes Schmidt
机构
[1] Universität Bayreuth,Mathematisches Institut
[2] Ruprecht-Karls-Universität Heidelberg,Mathematisches Institut
来源
关键词
Maximal Subgroup; Galois Group; Monodromy Group; Hyperplane Arrangement; Absolute Galois Group;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a family of motives associated to the rigid local system whose monodromy is dense in the simple algebraic group of type G2 and which has a local monodromy of order 7 at ∞. We prove an explicit Hilbert irreduciblity theorem for the associated étale realizations and deduce that the specialized motives at the points of irreducibility have motivic Galois group G2.
引用
收藏
页码:81 / 106
页数:25
相关论文
共 50 条
  • [1] RIGID G2-REPRESENTATIONS AND MOTIVES OF TYPE G2
    Dettweiler, Michael
    Schmidt, Johannes
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (01) : 81 - 106
  • [2] Rigid local systems and motives of type G2
    Dettweiler, Michael
    Reiter, Stefan
    Katz, Nicholas M.
    COMPOSITIO MATHEMATICA, 2010, 146 (04) : 929 - 963
  • [3] REPRESENTATIONS OF AFFINE HECKEALGE BRAS OF TYPE G2
    席南华
    Acta Mathematica Scientia, 2009, 29 (03) : 515 - 526
  • [4] Vertex representations for toroidal Lie algebra of type G2
    Liu, D
    Hua, NH
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 198 (1-3) : 257 - 279
  • [5] Wildly ramified rigid G2$G_2$-local systems
    Jakob, Konstantin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2539 - 2556
  • [6] Motives with Galois group of type G2:: an exceptional theta-correspondence
    Gross, BH
    Savin, G
    COMPOSITIO MATHEMATICA, 1998, 114 (02) : 153 - 217
  • [7] On minimal representations of Chevalley groups of type Dn, En, and G2
    Loke, Hung Yean
    Savin, Gordan
    MATHEMATISCHE ANNALEN, 2008, 340 (01) : 195 - 208
  • [8] On minimal representations of Chevalley groups of type Dn, En and G2
    Hung Yean Loke
    Gordan Savin
    Mathematische Annalen, 2008, 340 : 195 - 208
  • [9] FURTHER RIGID TRIPLES OF CLASSES IN G2
    Conder, Matthew
    Litterick, Alastair
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2019, 8 (04) : 5 - 9
  • [10] A rigid triple of conjugacy classes in G2
    Liebeck, Martin W.
    Litterick, Alastair J.
    Marion, Claude
    JOURNAL OF GROUP THEORY, 2011, 14 (01) : 31 - 35