Inverse optimal control and construction of control Lyapunov functions

被引:0
|
作者
Shahmansoorian A. [1 ]
机构
[1] Shahrood University of Technology, Faculty of Electrical and Robotic Engineering, Shahrood
关键词
Nonlinear System; Suboptimal Solution; Gain Margin; Control Lyapunov Function; Main Theoretical Result;
D O I
10.1007/s10958-009-9553-5
中图分类号
学科分类号
摘要
In this paper, the construction of CLFs for nonlinear systems and a new inverse optimal control law are presented. The construction of a CLF for an affine nonlinear system is reduced to the construction of a CLF for a simpler system, and a new LgV type control law with respect to a CLF is provided. This control law is a generalization of Sontag's formula and contains a design parameter. Tuning this parameter gives many suboptimal solutions for the optimization problem. Also, the gain margin and sector margin of the control law are calculated. Examples are provided to illustrate the main theoretical results of the paper. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 50 条
  • [21] A Numerical Approach for Stochastic Switched Polynomial Optimal Control and Approximating Control Lyapunov Functions
    Ramtin Davoudi
    Seyed Mohammad Hosseini
    Amin Ramezani
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 563 - 582
  • [22] Inverse Model Predictive Control: Learning Optimal Control Cost Functions for MPC
    Zhang, Fawang
    Duan, Jingliang
    Xu, Haoyuan
    Chen, Hao
    Liu, Hui
    Nie, Shida
    Li, Shengbo Eben
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13644 - 13655
  • [23] Uniting Control Lyapunov and Control Barrier Functions
    Romdlony, Muhammad Zakiyullah
    Jayawardhana, Bayu
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2293 - 2298
  • [24] Control Lyapunov functions for switched control systems
    Sun, HF
    Zhao, J
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1890 - 1891
  • [25] Flexible Control Lyapunov Functions
    Lazar, M.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 102 - 107
  • [26] CONTROL ENGINEERING APPLICATIONS OF VI ZUBOVS CONSTRUCTION PROCEDURE FOR LYAPUNOV FUNCTIONS
    FALLSIDE, F
    PATEL, MR
    ETHERTON, M
    MARGOLIS, SG
    VOGT, WG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1965, AC10 (02) : 220 - &
  • [27] CONTROL ENGINEERING APPLICATIONS OF VI ZUBOVS CONSTRUCTION PROCEDURE FOR LYAPUNOV FUNCTIONS
    MARGOLIS, SG
    VOGT, WG
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1963, AC 8 (02) : 104 - &
  • [28] LYAPUNOV FUNCTIONS AND A CONTROL PROBLEM
    KAYANDE, AA
    MULEY, DB
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 63 : 435 - &
  • [29] Global extension of local control Lyapunov functions via exit-time optimal control
    Yegorov, Ivan
    Dower, Peter M.
    Gruene, Lars
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 874 - 879
  • [30] Optimal Control and Inverse Optimal Control by Distribution Matching
    Arenz, Oleg
    Abdulsamad, Hany
    Neumann, Gerhard
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 4046 - 4053