Light quark jet quenching in higher-derivative gravity

被引:0
|
作者
Zi-qiang Zhang
Xiangrong Zhu
De-fu Hou
机构
[1] China University of Geosciences (Wuhan),School of Mathematics and Physics
[2] Huzhou University,School of Science
[3] Central China Normal University,Key Laboratory of Quark and Lepton Physics (MOE)
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study finite-coupling corrections on the energy loss of light quarks in strongly coupled N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=4$$\end{document} super Yang–Mills (SYM) plasma. We perform the analysis by computing the stopping distance of an image jet induced by a massless source field, characterized by a massless particle falling along the null geodesic in Einstein gravity with curvature-squared (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document}) corrections. It turns out that the stopping distance in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} theories can be larger or smaller than its SYM counterpart depending on the higher-derivative coefficients. Moreover, we evaluate the stopping distance in the Gauss–Bonnet background and find that increasing λGB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _\textrm{GB}$$\end{document} (a dimensionless parameter in Gauss–Bonnet gravity) leads to a decrease in the stopping distance, thus enhancing the energy loss of light quarks, in agreement with previous findings for the drag force, jet quenching parameter, and the instantaneous energy loss of light quarks using shooting strings.
引用
收藏
相关论文
共 50 条
  • [21] Kundt geometries in higher-derivative gravity
    Hruska, Ondrej
    Svarc, Robert
    Podolsky, Jiri
    15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 1360 - 1365
  • [22] Softly higher-derivative massive gravity
    C. A. S. Almeida
    W. T. Cruz
    R. V. Maluf
    A. Yu. Petrov
    P. Porfirio
    The European Physical Journal C, 82
  • [23] Black hole multipoles in higher-derivative gravity
    Cano, Pablo A.
    Ganchev, Bogdan
    Mayerson, Daniel R.
    Ruiperez, Alejandro
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
  • [24] NO NEW KASNER SOLUTION IN HIGHER-DERIVATIVE GRAVITY
    BARROW, JD
    MODERN PHYSICS LETTERS A, 1989, 4 (06) : 519 - 519
  • [25] On the cancellation of Newtonian singularities in higher-derivative gravity
    Giacchini, Breno L.
    PHYSICS LETTERS B, 2017, 766 : 306 - 311
  • [26] Higher-derivative gravity and the AdS/CFT correspondence
    Fukuma, M
    Matsuura, S
    Sakai, T
    PROGRESS OF THEORETICAL PHYSICS, 2001, 105 (06): : 1017 - 1044
  • [27] Cosmological backreaction in higher-derivative gravity expansions
    Preston, Anthony W. H.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (08):
  • [28] Higher-derivative gravity and the AdS/CFT correspondence
    Matsuura, S
    STRING THEORY, 2002, 607 : 320 - 322
  • [29] Higher-derivative gravity in brane world models
    Parry, M
    Pichler, S
    Deeg, D
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (04): : 295 - 310
  • [30] HIGHER-DERIVATIVE GRAVITY IN 2-DIMENSIONS
    SOLODUKHIN, SN
    PHYSICAL REVIEW D, 1995, 51 (02): : 591 - 602