On the Hyers–Ulam stability of Riemann–Liouville multi-order fractional differential equations

被引:0
|
作者
D. X. Cuong
机构
[1] Vietnam Maritime University,Department of Mathematics
来源
Afrika Matematika | 2019年 / 30卷
关键词
Fractional multi-order systems; Existence and uniqueness solutions; Weighted norm; Fixed point theorem; 47H09; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using a Bielecki’s type norm and Banach fixed point theorem, we obtain a result on the Hyers–Ulam stability of Riemann–Liouville multi-order fractional differential equations.
引用
收藏
页码:1041 / 1047
页数:6
相关论文
共 50 条
  • [31] Ulam-Hyers-Rassias stability for generalized fractional differential equations
    Boucenna, Djalal
    Ben Makhlouf, Abdellatif
    El-hady, El-sayed
    Hammami, Mohamed Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10267 - 10280
  • [32] Ulam-Hyers Stability for Fractional Differential Equations in Quaternionic Analysis
    Yang, Zhan-Peng
    Xu, Tian-Zhou
    Qi, Min
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2016, 26 (01) : 469 - 478
  • [33] Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions
    Zada, Akbar
    Alzabut, Jehad
    Waheed, Hira
    Popa, Ioan-Lucian
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [34] Fractional Order Pseudoparabolic Partial Differential Equation: Ulam–Hyers Stability
    J. Vanterler da C. Sousa
    E. Capelas de Oliveira
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 481 - 496
  • [35] Ulam-Hyers and generalized Ulam-Hyers stability of fractional functional integro-differential equations
    Dilna, Natalia
    Langerova, Martina
    IFAC PAPERSONLINE, 2024, 58 (12): : 280 - 285
  • [36] Existence and Ulam type stability for nonlinear Riemann-Liouville fractional differential equations with constant delay
    Agarwal, Ravi
    Hristova, Snezhana
    O'Regan, Donal
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (67) : 1 - 18
  • [37] Existence and stability of solution for multi-order nonlinear fractional differential equations
    Xie, Leping
    Zhou, Jueliang
    Deng, Haiyun
    He, Yubo
    AIMS MATHEMATICS, 2022, 7 (09): : 16440 - 16448
  • [38] Hyers-Ulam Stability of Fifth Order Linear Differential Equations
    Bowmiya, S.
    Balasubramanian, G.
    Govindan, Vediyappan
    Donganon, Mana
    Byeon, Haewon
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 3585 - 3609
  • [39] Hyers-Ulam stability of delay differential equations of first order
    Huang, Jinghao
    Li, Yongjin
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) : 60 - 66
  • [40] Hyers-Ulam stability of linear differential equations of first order
    Jung, SM
    APPLIED MATHEMATICS LETTERS, 2004, 17 (10) : 1135 - 1140